Corneal Anatomy

  • Miguel Gonzalez-AndradesEmail author
  • Pablo Argüeso
  • Ilene Gipson
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


The cornea is a uniquely translucent, avascular tissue located on the anterior segment of the eye. It is surrounded and maintained by the adjacent corneoscleral limbus and the connective tissue of the conjunctiva with its adnexa. It plays a vital role in visual function by providing (1) the major refractive component of the visual system, (2) a translucent tissue that allows light passage to the lens and retina, and (3) a barrier that protects the eye from fluid loss and the external environment. These crucial functions result from the structure of the cornea, which is composed of three anatomical layers: epithelium, stroma, and endothelium. The limbus is the reservoir for the adult stem cell population that replenishes the cornea and is the site of termination of the vasculature and entry of the nerves that provide an extraordinarily rich innervation environment.


Cornea Anatomy Histology Development Embryology Innervation Corneal epithelium Corneal stroma Corneal endothelium 


  1. 1.
    Gipson IK, Joyce NC. Anatomy and cell biology of the cornea, superficial limbus and conjunctiva. In: Albert D, Miller J, Azar D, Blodi B, editors. Albert & Jakobiec’s principles and practice of ophthalmology. Philadelphia/Edinburgh: Saunders/Elsevier; 2008. p. 423–40.CrossRefGoogle Scholar
  2. 2.
    Gipson IK, Joyce NJ, Zieske JD. The anatomy and cell biology of the human cornea, limbus, conjunctiva, and adnexa. In: Foster CS, Azar DT, Dohlman CH, editors. Smolin and Thoft’s the cornea : scientific foundations and clinical practice. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 1–35.Google Scholar
  3. 3.
    Lwigale PY. Corneal development: different cells from a common progenitor. Prog Mol Biol Transl Sci. 2015;134:43–59.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Collomb E, Yang Y, Foriel S, Cadau S, Pearton DJ, Dhouailly D. The corneal epithelium and lens develop independently from a common pool of precursors. Dev Dyn. 2013;242:401–13.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Creuzet S, Vincent C, Couly G. Neural crest derivatives in ocular and periocular structures. Int J Dev Biol. 2005;49:161–71.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Lwigale PY, Cressy PA, Bronner-Fraser M. Corneal keratocytes retain neural crest progenitor cell properties. Dev Biol. 2005;288:284–93.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Greene CA, Green CR, Dickinson ME, Johnson V, Sherwin T. Keratocytes are induced to produce collagen type II: a new strategy for in vivo corneal matrix regeneration. Exp Cell Res. 2016;347:241–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Rufer F, Schroder A, Erb C. White-to-white corneal diameter: normal values in healthy humans obtained with the Orbscan II topography system. Cornea. 2005;24:259–61.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Khng C, Osher RH. Evaluation of the relationship between corneal diameter and lens diameter. J Cataract Refract Surg. 2008;34:475–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Doughty MJ, Zaman ML. Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol. 2000;44:367–408.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Randleman JB, Lynn MJ, Perez-Straziota CE, Weissman HM, Kim SW. Comparison of central and peripheral corneal thickness measurements with scanning-slit, Scheimpflug and Fourier-domain ocular coherence tomography. Br J Ophthalmol. 2015;99:1176–81.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Doughty MJ, Jonuscheit S. An assessment of regional differences in corneal thickness in normal human eyes, using the Orbscan II or ultrasound pachymetry. Optometry. 2007;78:181–90.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Argueso P, Tisdale A, Mandel U, Letko E, Foster CS, Gipson IK. The cell-layer- and cell-type-specific distribution of GalNAc-transferases in the ocular surface epithelia is altered during keratinization. Invest Ophthalmol Vis Sci. 2003;44:86–92.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Gipson IK. Distribution of mucins at the ocular surface. Exp Eye Res. 2004;78:379–88.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Nichols B, Dawson CR, Togni B. Surface features of the conjunctiva and cornea. Invest Ophthalmol Vis Sci. 1983;24:570–6.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Gipson IK, Argueso P. Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol. 2003;231:1–49.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Gipson IK, Spurr-Michaud S, Tisdale A, Menon BB. Comparison of the transmembrane mucins MUC1 and MUC16 in epithelial barrier function. PLoS One. 2014;9:e100393.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Argueso P, Spurr-Michaud S, Russo CL, Tisdale A, Gipson IK. MUC16 mucin is expressed by the human ocular surface epithelia and carries the H185 carbohydrate epitope. Invest Ophthalmol Vis Sci. 2003;44:2487–95.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Shafiq MA, Gemeinhart RA, Yue BY, Djalilian AR. Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma. Tissue Eng Part C Methods. 2012;18:340–8.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tuori A, Uusitalo H, Burgeson RE, Terttunen J, Virtanen I. The immunohistochemical composition of the human corneal basement membrane. Cornea. 1996;15:286–94.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Resch MD, Schlotzer-Schrehardt U, Hofmann-Rummelt C, Kruse FE, Seitz B. Alterations of epithelial adhesion molecules and basement membrane components in lattice corneal dystrophy (LCD). Graefes Arch Clin Exp Ophthalmol. 2009;247:1081–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Castro-Munozledo F. Review: corneal epithelial stem cells, their niche and wound healing. Mol Vis. 2013;19:1600–13.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Gipson IK. Adhesive mechanisms of the corneal epithelium. Acta Ophthalmol Suppl. 1992;202:13–7.Google Scholar
  24. 24.
    Gonzalez-Andrades M, Garzon I, Gascon MI, et al. Sequential development of intercellular junctions in bioengineered human corneas. J Tissue Eng Regen Med. 2009;3:442–9.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Colabelli Gisoldi RA, Pocobelli A, Villani CM, Amato D, Pellegrini G. Evaluation of molecular markers in corneal regeneration by means of autologous cultures of limbal cells and keratoplasty. Cornea. 2010;29:715–22.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Shurman DL, Glazewski L, Gumpert A, Zieske JD, Richard G. In vivo and in vitro expression of connexins in the human corneal epithelium. Invest Ophthalmol Vis Sci. 2005;46:1957–65.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ferrari G, Hajrasouliha AR, Sadrai Z, Ueno H, Chauhan SK, Dana R. Nerves and neovessels inhibit each other in the cornea. Invest Ophthalmol Vis Sci. 2013;54:813–20.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bonini S, Rama P, Olzi D, Lambiase A. Neurotrophic keratitis. Eye (Lond). 2003;17:989–95.CrossRefGoogle Scholar
  29. 29.
    Muller LJ, Marfurt CF, Kruse F, Tervo TM. Corneal nerves: structure, contents and function. Exp Eye Res. 2003;76:521–42.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Shaheen BS, Bakir M, Jain S. Corneal nerves in health and disease. Surv Ophthalmol. 2014;59:263–85.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sacchetti M, Lambiase A. Neurotrophic factors and corneal nerve regeneration. Neural Regen Res. 2017;12:1220–4.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Marfurt CF, Cox J, Deek S, Dvorscak L. Anatomy of the human corneal innervation. Exp Eye Res. 2010;90:478–92.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    West JD, Dora NJ, Collinson JM. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance. World J Stem Cells. 2015;7:281–99.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lavker RM, Dong G, Cheng SZ, Kudoh K, Cotsarelis G, Sun TT. Relative proliferative rates of limbal and corneal epithelia. Implications of corneal epithelial migration, circadian rhythm, and suprabasally located DNA-synthesizing keratinocytes. Invest Ophthalmol Vis Sci. 1991;32:1864–75.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Yanoff M, Fine BS. Ocular pathology. 5th ed. Philadelphia: Mosby; 2002. xxi, 701 p.Google Scholar
  36. 36.
    Schlotzer-Schrehardt U, Kruse FE. Identification and characterization of limbal stem cells. Exp Eye Res. 2005;81:247–64.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Menzel-Severing J, Kruse FE, Schlotzer-Schrehardt U. Stem cell-based therapy for corneal epithelial reconstruction: present and future. Can J Ophthalmol. 2013;48:13–21.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Takacs L, Toth E, Berta A, Vereb G. Stem cells of the adult cornea: from cytometric markers to therapeutic applications. Cytometry A. 2009;75:54–66.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Schlotzer-Schrehardt U, Dietrich T, Saito K, et al. Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Exp Eye Res. 2007;85:845–60.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Notara M, Alatza A, Gilfillan J, et al. In sickness and in health: corneal epithelial stem cell biology, pathology and therapy. Exp Eye Res. 2010;90:188–95.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ksander BR, Kolovou PE, Wilson BJ, et al. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature. 2014;511:353–7.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ramos T, Scott D, Ahmad S. An update on ocular surface epithelial stem cells: cornea and conjunctiva. Stem Cells Int. 2015;2015:601731.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Foster JW, Jones RR, Bippes CA, Gouveia RM, Connon CJ. Differential nuclear expression of Yap in basal epithelial cells across the cornea and substrates of differing stiffness. Exp Eye Res. 2014;127:37–41.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Jones RR, Hamley IW, Connon CJ. Ex vivo expansion of limbal stem cells is affected by substrate properties. Stem Cell Res. 2012;8:403–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Li W, Hayashida Y, Chen YT, Tseng SC. Niche regulation of corneal epithelial stem cells at the limbus. Cell Res. 2007;17:26–36.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hogan MJ, Alvarado JA, Weddell JE. Histology of the human eye. 1st ed. Philadelphia: W.C. Saunders Company; 1971.Google Scholar
  47. 47.
    Dziasko MA, Tuft SJ, Daniels JT. Limbal melanocytes support limbal epithelial stem cells in 2D and 3D microenvironments. Exp Eye Res. 2015;138:70–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Funderburgh JL, Funderburgh ML, Du Y. Stem cells in the limbal stroma. Ocul Surf. 2016;14:113–20.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Notara M, Daniels JT. Biological principals and clinical potentials of limbal epithelial stem cells. Cell Tissue Res. 2008;331:135–43.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Du Y, Funderburgh ML, Mann MM, SundarRaj N, Funderburgh JL. Multipotent stem cells in human corneal stroma. Stem Cells. 2005;23:1266–75.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Funderburgh ML, Du Y, Mann MM, SundarRaj N, Funderburgh JL. PAX6 expression identifies progenitor cells for corneal keratocytes. FASEB J: Off Publication Fed Am Soc Exp Biol. 2005;19:1371–3.CrossRefGoogle Scholar
  52. 52.
    Pinnamaneni N, Funderburgh JL. Concise review: stem cells in the corneal stroma. Stem Cells. 2012;30:1059–63.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells. 2004;22:355–66.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ma DH, Chen HC, Lai JY, et al. Matrix revolution: molecular mechanism for inflammatory corneal neovascularization and restoration of corneal avascularity by epithelial stem cell transplantation. Ocul Surf. 2009;7:128–44.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Meek KM, Fullwood NJ. Corneal and scleral collagens--a microscopist’s perspective. Micron. 2001;32:261–72.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Abass A, Hayes S, White N, Sorensen T, Meek KM. Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution. J R Soc Interface. 2015;12:20140717.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ruberti JW, Zieske JD. Prelude to corneal tissue engineering - gaining control of collagen organization. Prog Retin Eye Res. 2008;27:549–77.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Quantock AJ, Young RD. Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function. Dev Dyn. 2008;237:2607–21.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Maurice DM. The structure and transparency of the cornea. J Physiol. 1957;136:263–86.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Goldman JN, Benedek GB. The relationship between morphology and transparency in the nonswelling corneal stroma of the shark. Investig Ophthalmol. 1967;6:574–600.Google Scholar
  61. 61.
    Benedek GB. Theory of transparency of the eye. Appl Opt. 1971;10:459–73.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res. 2015;49:1–16.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lewis PN, Pinali C, Young RD, Meek KM, Quantock AJ, Knupp C. Structural interactions between collagen and proteoglycans are elucidated by three-dimensional electron tomography of bovine cornea. Structure. 2010;18:239–45.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Leibowitz HM, Waring GO. Corneal disorders : clinical diagnosis and management. 2nd ed. Philadelphia: Saunders; 1998. xvi, 1172 p.Google Scholar
  65. 65.
    Petroll WM, Boettcher K, Barry P, Cavanagh HD, Jester JV. Quantitative assessment of anteroposterior keratocyte density in the normal rabbit cornea. Cornea. 1995;14:3–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Patel S, McLaren J, Hodge D, Bourne W. Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci. 2001;42:333–9.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Hashmani K, Branch MJ, Sidney LE, et al. Characterization of corneal stromal stem cells with the potential for epithelial transdifferentiation. Stem Cell Res Ther. 2013;4:75.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Branch MJ, Hashmani K, Dhillon P, Jones DR, Dua HS, Hopkinson A. Mesenchymal stem cells in the human corneal limbal stroma. Invest Ophthalmol Vis Sci. 2012;53:5109–16.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Foster JW, Gouveia RM, Connon CJ. Low-glucose enhances keratocyte-characteristic phenotype from corneal stromal cells in serum-free conditions. Sci Rep. 2015;5:10839.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chen Y, Jester JV, Anderson DM, et al. Corneal haze phenotype in Aldh3a1-null mice: in vivo confocal microscopy and tissue imaging mass spectrometry. Chem Biol Interact. 2017;276:9–14.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Jester JV. Corneal crystallins and the development of cellular transparency. Semin Cell Dev Biol. 2008;19:82–93.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Yamagami S, Usui T, Amano S, Ebihara N. Bone marrow-derived cells in mouse and human cornea. Cornea. 2005;24:S71–4.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Nakamura T, Ishikawa F, Sonoda KH, et al. Characterization and distribution of bone marrow-derived cells in mouse cornea. Invest Ophthalmol Vis Sci. 2005;46:497–503.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Takayama T, Kondo T, Kobayashi M, et al. Characteristic morphology and distribution of bone marrow derived cells in the cornea. Anat Rec (Hoboken). 2009;292:756–63.CrossRefGoogle Scholar
  75. 75.
    Forrester JV, Xu H, Kuffova L, Dick AD, McMenamin PG. Dendritic cell physiology and function in the eye. Immunol Rev. 2010;234:282–304.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Saban DR. The chemokine receptor CCR7 expressed by dendritic cells: a key player in corneal and ocular surface inflammation. Ocul Surf. 2014;12:87–99.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Hattori T, Takahashi H, Dana R. Novel insights into the immunoregulatory function and localization of dendritic cells. Cornea. 2016;35(Suppl 1):S49–54.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ellenberg D, Azar DT, Hallak JA, et al. Novel aspects of corneal angiogenic and lymphangiogenic privilege. Prog Retin Eye Res. 2010;29:208–48.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zhong W, Montana M, Santosa SM, et al. Angiogenesis and lymphangiogenesis in corneal transplantation-a review. Surv Ophthalmol. 2018;63:453–79.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Wilson SE, Hong JW. Bowman’s layer structure and function: critical or dispensable to corneal function? A hypothesis. Cornea. 2000;19:417–20.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Beuerman RW, Pedroza L. Ultrastructure of the human cornea. Microsc Res Tech. 1996;33:320–35.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kabosova A, Azar DT, Bannikov GA, et al. Compositional differences between infant and adult human corneal basement membranes. Invest Ophthalmol Vis Sci. 2007;48:4989–99.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Johnson DH, Bourne WM, Campbell RJ. The ultrastructure of Descemet’s membrane. I. Changes with age in normal corneas. Arch Ophthalmol. 1982;100:1942–7.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Weller JM, Schlotzer-Schrehardt U, Kruse FE, Tourtas T. Splitting of the recipient’s descemet membrane in descemet membrane endothelial keratoplasty-ultrastructure and clinical relevance. Am J Ophthalmol. 2016;172:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Srinivas SP. Dynamic regulation of barrier integrity of the corneal endothelium. Optom Vis Sci. 2010;87:E239–54.PubMedPubMedCentralGoogle Scholar
  86. 86.
    He Z, Forest F, Gain P, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Worner CH, Olguin A, Ruiz-Garcia JL, Garzon-Jimenez N. Cell pattern in adult human corneal endothelium. PLoS One. 2011;6:e19483.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Harrison TA, He Z, Boggs K, Thuret G, Liu HX, Defoe DM. Corneal endothelial cells possess an elaborate multipolar shape to maximize the basolateral to apical membrane area. Mol Vis. 2016;22:31–9.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Amann J, Holley GP, Lee SB, Edelhauser HF. Increased endothelial cell density in the paracentral and peripheral regions of the human cornea. Am J Ophthalmol. 2003;135:584–90.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Barry PA, Petroll WM, Andrews PM, Cavanagh HD, Jester JV. The spatial organization of corneal endothelial cytoskeletal proteins and their relationship to the apical junctional complex. Invest Ophthalmol Vis Sci. 1995;36:1115–24.PubMedGoogle Scholar
  91. 91.
    Alaminos M, Gonzalez-Andrades M, Munoz-Avila JI, Garzon I, Sanchez-Quevedo MC, Campos A. Volumetric and ionic regulation during the in vitro development of a corneal endothelial barrier. Exp Eye Res. 2008;86:758–69.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Mergler S, Pleyer U. The human corneal endothelium: new insights into electrophysiology and ion channels. Prog Retin Eye Res. 2007;26:359–78.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Okumura N, Hirano H, Numata R, et al. Cell surface markers of functional phenotypic corneal endothelial cells. Invest Ophthalmol Vis Sci. 2014;55:7610–8.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Yoshihara M, Ohmiya H, Hara S, et al. Discovery of molecular markers to discriminate corneal endothelial cells in the human body. PLoS One. 2015;10:e0117581.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Lass JH, Gal RL, Ruedy KJ, et al. An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study. Ophthalmology. 2005;112:431–40.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Krachmer JH, Mannis MJ, Holland EJ. Cornea. 3rd ed. Philadelphia: Elsevier/Mosby; 2011. 1–2 p.Google Scholar
  97. 97.
    Schroeter J, Rieck P. Endothelial evaluation in the cornea bank. Dev Ophthalmol. 2009;43:47–62.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Joyce NC. Proliferative capacity of corneal endothelial cells. Exp Eye Res. 2012;95:16–23.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Peh GS, Beuerman RW, Colman A, Tan DT, Mehta JS. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation. 2011;91:811–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Hara S, Hayashi R, Soma T, et al. Identification and potential application of human corneal endothelial progenitor cells. Stem Cells Dev. 2014;23:2190–201.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Espana EM, Sun M, Birk DE. Existence of corneal endothelial slow-cycling cells. Invest Ophthalmol Vis Sci. 2015;56:3827–37.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Dirisamer M, Dapena I, Ham L, et al. Patterns of corneal endothelialization and corneal clearance after descemet membrane endothelial keratoplasty for fuchs endothelial dystrophy. Am J Ophthalmol. 2011;152:543–555 e541.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Borkar DS, Veldman P, Colby KA. Treatment of Fuchs endothelial dystrophy by Descemet stripping without endothelial keratoplasty. Cornea. 2016;35:1267–73.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Iovieno A, Neri A, Soldani AM, Adani C, Fontana L. Descemetorhexis without graft placement for the treatment of Fuchs endothelial dystrophy: preliminary results and review of the literature. Cornea. 2017;36:637–41.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Miguel Gonzalez-Andrades
    • 1
    Email author
  • Pablo Argüeso
    • 1
  • Ilene Gipson
    • 1
  1. 1.Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of OphthalmologyHarvard Medical SchoolBostonUSA

Personalised recommendations