Advertisement

The Role of Mathematics Teachers’ Views for Their Competence of Analysing Classroom Situations

  • Sebastian KuntzeEmail author
  • Marita Friesen
Chapter

Abstract

When teachers analyse mathematics classrooms, it can be expected that they use their professional knowledge, including their instruction-related views. In the case of analysing classroom situations regarding the use of representations, prior research suggests interdependencies. Consequently, when assessing teachers’ competence of analysing, the role of teachers’ views should be taken into account so as to explore their potential role for the competence construct. This need for research is therefore addressed in this study. For a sample consisting of 31 in-service teachers, interdependencies between instruction-related views and the teachers’ analysis were examined by quantitative and qualitative analyses. The results indicate such interdependencies and give insight into possible reasons for these.

Keywords

Teachers’ views Competence of analysing Noticing Representations Professional knowledge Cognitive constructivist views 

Notes

Acknowledgements

This study is supported in the framework of the project EKoL supported by the Ministry of Science, Research and the Arts in Baden-Wuerttemberg.

References

  1. Ainsworth, S. E. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198.CrossRefGoogle Scholar
  2. Blömeke, S., Kaiser, G., & Lehmann, R. (Eds.). (2010). TEDS-M 2008–Professionelle Kompetenz und Lerngelegenheiten angehender Mathematiklehrkräfte für die Sekundarstufe I im internationalen Vergleich. Münster: Waxmann.Google Scholar
  3. Bromme, R. (1992). Der Lehrer als Experte. Zur Psychologie des professionellen Wissens. Bern: Hans Huber.Google Scholar
  4. Bromme, R. (1997). Kompetenzen, Funktionen und unterrichtliches Handeln des Lehrers. In F. Weinert (Ed.), Enzyklopädie der Psychologie: Psychologie des Unterrichts und der Schule (pp. 177–212). Göttingen: Hogrefe.Google Scholar
  5. Doerr, H., & Lerman, S. (2009). The procedural and the conceptual in mathematics pedagogy: What teachers learn from their teaching. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of 33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 433–440). Thessaloniki, Greece.Google Scholar
  6. Dreher, A., & Kuntze, S. (2015a). Teachers’ professional knowledge and noticing: The case of multiple representations in the mathematics classroom. Educational Studies in Mathematics, 88(1), 89–114.CrossRefGoogle Scholar
  7. Dreher, A., & Kuntze, S. (2015b). Teachers facing the dilemma of multiple representations being aid and obstacle for learning: Evaluations of tasks and theme-specific noticing. Journal für Mathematik-Didaktik, 36(1), 23–44.  https://doi.org/10.1007/s13138-014-0068-3CrossRefGoogle Scholar
  8. Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103–131.CrossRefGoogle Scholar
  9. Fennema, E., Carpenter, T. P., & Loef, M. (1990). Teacher belief scale: Cognitively guided instruction project. Madison: University of Wisconsin.Google Scholar
  10. Friesen, M., Dreher, A., & Kuntze, S. (2015). Pre-service teachers’ growth in analysing classroom videos. In K. Krainer & N. Vondrová (Eds.), Proceedings of CERME 9 (pp. 2783–2789). Prague: Charles University in Prague and ERME.Google Scholar
  11. Friesen, M., & Kuntze, S. (2016). Teacher students analyse texts, comics and video-based classroom vignettes regarding the use of representations - does format matter? In C. Csíkos, A. Rausch, & J. Szitányi (Eds.), Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 259–266). Szeged: PME.Google Scholar
  12. Gagné, R., Briggs, L., & Wager, W. (1992). Principles of instructional design. Orlando, FL: Hartcourt Brace Jovanovich Pulishers.Google Scholar
  13. Goldin, G., & Shteingold, N. (2001). Systems of representation and the development of mathematical concepts. In A. A. Cuoco & F. R. Curcio (Eds.), The role of representation in school mathematics (pp. 1–23). Boston, Virginia: NCTM.Google Scholar
  14. Kersting, N., Givvin, K., Thompson, B., Santagata, R., & Stigler, J. (2012). Measuring usable knowledge: Teachers’ analyses of mathematics classroom videos predict teaching quality and student learning. American Educational Research Journal, 49(3), 568–589.CrossRefGoogle Scholar
  15. Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (2013). Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV project. New York: Springer.CrossRefGoogle Scholar
  16. Kuntze, S. (2012). Pedagogical content beliefs: Global, content domain-related and situation-specific components. Educational Studies in Mathematics, 79(2), 273–292.CrossRefGoogle Scholar
  17. Kuntze, S., & Dreher, A. (2015). PCK and the awareness of affective aspects reflected in teachers’ views about learning opportunities–a conflict? In B. Pepin & B. Rösken-Winter (Eds.), From beliefs and affect to dynamic systems: (Exploring) a mosaic of relationships and interactions (pp. 295–318). New York: Springer.Google Scholar
  18. Kuntze, S., Dreher, A., & Friesen, M. (2015). Teachers’ resources in analysing mathematical content and classroom situations. In K. Krainer & N. Vondrová (Eds.), Proceedings of CERME 9 (pp. 3213–3219). Prague: Charles University and ERME.Google Scholar
  19. Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 33–40). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  20. Lipowsky, F., Thußbas, C., Klieme, E., Reusser, K., & Pauli, C. (2003). Professionelles Lehrerwissen, selbstbezogene Kognitionen und wahrgenommene Schulumwelt. Unterrichtswissenschaft, 31(3), 206–237.Google Scholar
  21. Mason, J. (2002). Researching your own practice. The discipline of noticing. London: Routledge Falmer.Google Scholar
  22. Mayring, P. (2015). Qualitative Inhaltsanalyse. Weinheim: Beltz.Google Scholar
  23. Pajares, F. M. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3), 307–332.CrossRefGoogle Scholar
  24. Schoenfeld, A. (2011). Toward professional development for teachers grounded in a theory of decision making. ZDM Mathematics Education, 43(4), 457–469.CrossRefGoogle Scholar
  25. Seidel, T., Blomberg, G., & Renkl, A. (2013). Instructional strategies for using video in teacher education. Teaching and Teacher Education, 34, 56–65.CrossRefGoogle Scholar
  26. Sherin, M., Jacobs, V., & Philipp, R. (2011). Mathematics teacher noticing. Seeing through teachers’ eyes. New York: Routledge.CrossRefGoogle Scholar
  27. Sherin, M. G., & van Es, E. A. (2009). Effects of video club participation on teachers’ professional vision. Journal of Teacher Education, 60(1), 20–37.CrossRefGoogle Scholar
  28. Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  29. Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22.CrossRefGoogle Scholar
  30. Skinner, B. (1958). Teaching machines. Science, 128, 969–977.CrossRefGoogle Scholar
  31. Staub, F., & Stern, E. (2002). The nature of teacher’s pedagogical content beliefs matters for students’ achievement gains. Journal of Educational Psychology, 94(2), 344–355.CrossRefGoogle Scholar
  32. Törner, G. (2002). Mathematical beliefs—A search for a common ground. In G. Leder, E. Pehkonen, & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 73–94). Dordrecht: Kluwer.Google Scholar
  33. Weinert, F. E. (Ed.). (2001). Leistungsmessung in Schulen. Weinheim: Belt.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Ludwigsburg University of EducationLudwigsburgGermany

Personalised recommendations