Advertisement

A-Contrario Horizon-First Vanishing Point Detection Using Second-Order Grouping Laws

  • Gilles SimonEmail author
  • Antoine Fond
  • Marie-Odile Berger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11214)

Abstract

We show that, in images of man-made environments, the horizon line can usually be hypothesized based on a-contrario detections of second-order grouping events. This allows constraining the extraction of the horizontal vanishing points on that line, thus reducing false detections. Experiments made on three datasets show that our method, not only achieves state-of-the-art performance w.r.t. horizon line detection on two datasets, but also yields much less spurious vanishing points than the previous top-ranked methods.

Keywords

Horizon line Vanishing point detection A-contrario model Perceptual grouping Gestalt theory Man-made environments 

References

  1. 1.
    Almansa, A., Desolneux, A., Vamech, S.: Vanishing point detection without any a priori information. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 502–507 (2003)CrossRefGoogle Scholar
  2. 2.
    Denis, P., Elder, J.H., Estrada, F.J.: Efficient edge-based methods for estimating Manhattan frames in urban imagery. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 197–210. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88688-4_15CrossRefGoogle Scholar
  3. 3.
    Desolneux, A., Moisan, L., Morel, J.M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach, 1st edn. Springer, New York (2007).  https://doi.org/10.1007/978-0-387-74378-3CrossRefGoogle Scholar
  4. 4.
    Fond, A., Berger, M.O., Simon, G.: Facade proposals for urban augmented reality. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (2017)Google Scholar
  5. 5.
    Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a line segment detector. Image Process. Line 2, 35–55 (2012).  https://doi.org/10.5201/ipol.2012.gjmr-lsdCrossRefGoogle Scholar
  6. 6.
    Košecká, J., Zhang, W.: Video compass. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 476–490. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-47979-1_32CrossRefGoogle Scholar
  7. 7.
    Lee, D.C., Hebert, M., Kanade, T.: Geometric reasoning for single image structure recovery. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)Google Scholar
  8. 8.
    Lezama, J., Grompone von Gioi, R., Randall, G., Morel, J.M.: Finding vanishing points via point alignments in image primal and dual domains. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  9. 9.
    Lezama, J., Morel, J.M., Randall, G., Grompone von Gioi, R.: A contrario 2D point alignment detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 499–512 (2015).  https://doi.org/10.1109/TPAMI.2014.2345389CrossRefGoogle Scholar
  10. 10.
    Lu, Y., Song, D., Xu, Y., Perera, A.G.A., Oh, S.: Automatic building exterior mapping using multilayer feature graphs. In: IEEE International Conference on Automation Science and Engineering (CASE) (2013)Google Scholar
  11. 11.
    Santalò, L.: Integral Geometry and Geometric Probability. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  12. 12.
    Simon, G., Fond, A., Berger, M.O.: A simple and effective method to detect orthogonal vanishing points in uncalibrated images of man-made environments. In: EUROGRAPHICS (2016)Google Scholar
  13. 13.
    Tardif, J.P.: Non-iterative approach for fast and accurate vanishing point detection. In: IEEE International Conference on Computer Vision (ICCV) (2009)Google Scholar
  14. 14.
    Tretyak, E., Barinova, O., Kohli, P., Lempitsky, V.: Geometric image parsing in man-made environments. Int. J. Comput. Vis. (IJCV) 97(3), 305–321 (2012)CrossRefGoogle Scholar
  15. 15.
    Vedaldi, A., Zisserman, A.: Self-similar sketch. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 87–100. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33709-3_7CrossRefGoogle Scholar
  16. 16.
    Wildenauer, H., Hanbury, A.: Robust camera self-calibration from monocular images of Manhattan worlds. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)Google Scholar
  17. 17.
    Xu, Y., Oh, S., Hoogs, A.: A minimum error vanishing point detection approach for uncalibrated monocular images of man-made environments. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013)Google Scholar
  18. 18.
    Zhai, M., Workman, S., Jacobs, N.: Detecting vanishing points using global image context in a non-manhattan world. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gilles Simon
    • 1
    Email author
  • Antoine Fond
    • 1
  • Marie-Odile Berger
    • 1
  1. 1.Loria, CNRS, Inria Nancy Grand EstUniversité de LorraineNancyFrance

Personalised recommendations