Advertisement

Fast and Accurate Intrinsic Symmetry Detection

  • Rajendra NagarEmail author
  • Shanmuganathan Raman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11205)

Abstract

In computer vision and graphics, various types of symmetries are extensively studied since symmetry present in objects is a fundamental cue for understanding the shape and the structure of objects. In this work, we detect the intrinsic reflective symmetry in triangle meshes where we have to find the intrinsically symmetric point for each point of the shape. We establish correspondences between functions defined on the shapes by extending the functional map framework and then recover the point-to-point correspondences. Previous approaches using the functional map for this task find the functional correspondences matrix by solving a non-linear optimization problem which makes them slow. In this work, we propose a closed form solution for this matrix which makes our approach faster. We find the closed-form solution based on our following results. If the given shape is intrinsically symmetric, then the shortest length geodesic between two intrinsically symmetric points is also intrinsically symmetric. If an eigenfunction of the Laplace-Beltrami operator for the given shape is an even (odd) function, then its restriction on the shortest length geodesic between two intrinsically symmetric points is also an even (odd) function. The sign of a low-frequency eigenfunction is the same on the neighboring points. Our method is invariant to the ordering of the eigenfunctions and has the least time complexity. We achieve the best performance on the SCAPE dataset and comparable performance with the state-of-the-art methods on the TOSCA dataset.

Keywords

Intrinsic symmetry Functional map Eigenfunction 

Notes

Acknowledgment

R. Nagar was supported by the TCS research Scholarship.

Supplementary material

474172_1_En_26_MOESM1_ESM.pdf (66.1 mb)
Supplementary material 1 (pdf 67718 KB)

References

  1. 1.
    Absil, P.A., Baker, C.G., Gallivan, K.A.: Trust-region methods on riemannian manifolds. Found. Comput. Math. 7(3), 303–330 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)Google Scholar
  3. 3.
    Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM Transactions on Graphics (TOG), vol. 24, pp. 408–416. ACM (2005)CrossRefGoogle Scholar
  4. 4.
    Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM (JACM) 45(6), 891–923 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berner, A., Bokeloh, M., Wand, M., Schilling, A., Seidel, H.P.: Generalized intrinsic symmetry detection (2009)Google Scholar
  6. 6.
    Berner, A., Wand, M., Mitra, N.J., Mewes, D., Seidel, H.P.: Shape analysis with subspace symmetries. In: Computer Graphics Forum, vol. 30, pp. 277–286. Wiley Online Library (2011)Google Scholar
  7. 7.
    Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: Manopt, a matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15(1), 1455–1459 (2014)zbMATHGoogle Scholar
  8. 8.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid shapes. Springer Science & Business Media (2008)Google Scholar
  9. 9.
    Cosmo, L., Rodolà, E., Bronstein, M., Torsello, A., Cremers, D., Sahillioglu, Y.: Shrec16: Partial matching of deformable shapes. Proc. 3DOR 2(9), 12 (2016)Google Scholar
  10. 10.
    Dessein, A., Smith, W.A.P., Wilson, R.C., Hancock, E.R.: Symmetry-aware mesh segmentation into uniform overlapping patches. In: Computer Graphics Forum, vol. 36, pp. 95–107. Wiley Online Library (2017)Google Scholar
  11. 11.
    Gallier, J., Quaintance, J.: Notes on differential geometry and Lie groups. University of Pennsylvania (2018)Google Scholar
  12. 12.
    Ghosh, D., Amenta, N., Kazhdan, M.: Closed-form blending of local symmetries. In: Computer Graphics Forum, vol. 29, pp. 1681–1688. Wiley Online Library (2010)Google Scholar
  13. 13.
    Jiang, W., Xu, K., Cheng, Z.Q., Zhang, H.: Skeleton-based intrinsic symmetry detection on point clouds. Graph. Models 75(4), 177–188 (2013)CrossRefGoogle Scholar
  14. 14.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Symmetry descriptors and 3D shape matching. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 115–123. ACM (2004)Google Scholar
  15. 15.
    Kerber, J., Bokeloh, M., Wand, M., Seidel, H.P.: Scalable symmetry detection for urban scenes. In: Computer Graphics Forum, vol. 32, pp. 3–15. Wiley Online Library (2013)Google Scholar
  16. 16.
    Kim, V.G., Lipman, Y., Chen, X., Funkhouser, T.: Möbius transformations for global intrinsic symmetry analysis. In: Computer Graphics Forum, vol. 29, pp. 1689–1700. Wiley Online Library (2010)Google Scholar
  17. 17.
    Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. In: ACM Transactions on Graphics (TOG), vol. 30, p. 79. ACM (2011)CrossRefGoogle Scholar
  18. 18.
    Korman, S., Litman, R., Avidan, S., Bronstein, A.M.: Probably approximately symmetric: Fast 3d symmetry detection with global guarantees. CoRR abs 1403, 2 (2014)Google Scholar
  19. 19.
    Kovnatsky, A., Bronstein, M.M., Bronstein, A.M., Glashoff, K., Kimmel, R.: Coupled quasi-harmonic bases. In: Computer Graphics Forum, vol. 32, pp. 439–448. Wiley Online Library (2013)Google Scholar
  20. 20.
    Kurz, C., et al.: Symmetry-aware template deformation and fitting. In: Computer Graphics Forum, vol. 33, pp. 205–219. Wiley Online Library (2014)Google Scholar
  21. 21.
    Li, B., Johan, H., Ye, Y., Lu, Y.: Efficient 3D reflection symmetry detection: a view-based approach. Graph. Models 83, 2–14 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Li, C., Wand, M., Wu, X., Seidel, H.P.: Approximate 3D partial symmetry detection using co-occurrence analysis. In: 2015 International Conference on 3D Vision (3DV), pp. 425–433. IEEE (2015)Google Scholar
  23. 23.
    Lipman, Y., Chen, X., Daubechies, I., Funkhouser, T.: Symmetry factored embedding and distance. In: ACM Transactions on Graphics (TOG), vol. 29, p. 103. ACM (2010)Google Scholar
  24. 24.
    Liu, X., Li, S., Liu, R., Wang, J., Wang, H., Cao, J.: Properly constrained orthonormal functional maps for intrinsic symmetries. Comput. Graph. 46, 198–208 (2015)CrossRefGoogle Scholar
  25. 25.
    Liu, Y., Hel-Or, H., Kaplan, C.S., Van Gool, L., et al.: Computational symmetry in computer vision and computer graphics. Found. Trends Comput. Graph. Vis. 5(1–2), 1–195 (2010)zbMATHGoogle Scholar
  26. 26.
    Loy, G., Eklundh, J.-O.: Detecting symmetry and symmetric constellations of features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 508–521. Springer, Heidelberg (2006).  https://doi.org/10.1007/11744047_39CrossRefGoogle Scholar
  27. 27.
    Lukáč, M., et al.: Nautilus: recovering regional symmetry transformations for image editing. ACM Trans. Graph. (TOG) 36(4), 108 (2017)CrossRefGoogle Scholar
  28. 28.
    Martinet, A., Soler, C., Holzschuch, N., Sillion, F.X.: Accurate detection of symmetries in 3D shapes. ACM Trans. Graph. (TOG) 25(2), 439–464 (2006)CrossRefGoogle Scholar
  29. 29.
    Mitra, N.J., Guibas, L.J., Pauly, M.: Partial and approximate symmetry detection for 3D geometry. ACM Trans. Graph. (TOG) 25(3), 560–568 (2006)CrossRefGoogle Scholar
  30. 30.
    Mitra, N.J., Guibas, L.J., Pauly, M.: Symmetrization. In: ACM Transactions on Graphics (TOG), vol. 26, p. 63. ACM (2007)Google Scholar
  31. 31.
    Mitra, N.J., Pauly, M.: Symmetry for architectural design. Advances in Architectural Geometry, pp. 13–16 (2008)Google Scholar
  32. 32.
    Mitra, N.J., Pauly, M., Wand, M., Ceylan, D.: Symmetry in 3D geometry: extraction and applications. In: Computer Graphics Forum, vol. 32, pp. 1–23. Wiley Online Library (2013)Google Scholar
  33. 33.
    Mitra, N.J.,Wand, M., Zhang, H., Cohen-Or, D., Kim, V., Huang, Q.X.: Structure-aware shape processing. In: ACM SIGGRAPH 2014 Courses, p. 13. ACM (2014)Google Scholar
  34. 34.
    Mitra, N.J., Yang, Y., Yan, D., Li, W., Agrawala, M.: Illustrating how mechanical assemblies work. ACM Trans. Graph. 29, 58 (2010)CrossRefGoogle Scholar
  35. 35.
    O’neill, B.: Semi-Riemannian geometry with applications to relativity, vol. 103. Academic press (1983)Google Scholar
  36. 36.
    Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. (TOG) 31(4), 30 (2012)CrossRefGoogle Scholar
  37. 37.
    Ovsjanikov, M., Sun, J., Guibas, L.: Global intrinsic symmetries of shapes. In: Computer Graphics Forum, vol. 27, pp. 1341–1348. Wiley Online Library (2008)Google Scholar
  38. 38.
    Panozzo, D., Lipman, Y., Puppo, E., Zorin, D.: Fields on symmetric surfaces. ACM Trans. Graph. (TOG) 31(4), 111 (2012)CrossRefGoogle Scholar
  39. 39.
    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., Funkhouser, T.: A planar-reflective symmetry transform for 3D shapes. ACM Trans. Graph. (TOG) 25(3), 549–559 (2006)CrossRefGoogle Scholar
  41. 41.
    Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Full and partial symmetries of non-rigid shapes. Int. J. Comput. Vis. 89(1), 18–39 (2010)CrossRefGoogle Scholar
  42. 42.
    Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sapiro, G.: Diffusion symmetries of non-rigid shapes. In: Proceedings of the 3DPVT, vol. 2. Citeseer (2010)Google Scholar
  43. 43.
    Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., Spagnuolo, M.: Discrete laplace-beltrami operators for shape analysis and segmentation. Comput. Graph. 33(3), 381–390 (2009)CrossRefGoogle Scholar
  44. 44.
    Shehu, A., Brunton, A., Wuhrer, S., Wand, M.: Characterization of partial intrinsic symmetries. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 267–282. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16220-1_19CrossRefGoogle Scholar
  45. 45.
    Shi, Z., Alliez, P., Desbrun, M., Bao, H., Huang, J.: Symmetry and orbit detection via lie-algebra voting. In: Computer Graphics Forum, vol. 35, pp. 217–227. Wiley Online Library (2016)Google Scholar
  46. 46.
    Sipiran, I., Gregor, R., Schreck, T.: Approximate symmetry detection in partial 3D meshes. In: Computer Graphics Forum, vol. 33, pp. 131–140. Wiley Online Library (2014)Google Scholar
  47. 47.
    Speciale, P., Oswald, M.R., Cohen, A., Pollefeys, M.: A symmetry prior for convex variational 3D reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 313–328. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46484-8_19CrossRefGoogle Scholar
  48. 48.
    Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum, vol. 28, pp. 1383–1392. Wiley Online Library (2009)Google Scholar
  49. 49.
    Sung, M., Kim, V.G., Angst, R., Guibas, L.: Data-driven structural priors for shape completion. ACM Trans. Graph. (TOG) 34(6), 175 (2015)CrossRefGoogle Scholar
  50. 50.
    Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. In: ACM Transactions on Graphics (TOG), vol. 24, pp. 553–560. ACM (2005)Google Scholar
  51. 51.
    Thomas, D.M., Natarajan, V.: Detecting symmetry in scalar fields using augmented extremum graphs. IEEE Trans. Vis. Comput. Graph. 19(12), 2663–2672 (2013)CrossRefGoogle Scholar
  52. 52.
    Wang, H., Huang, H.: Group representation of global intrinsic symmetries. In: Computer Graphics Forum, vol. 36, pp. 51–61. Wiley Online Library (2017)Google Scholar
  53. 53.
    Wang, Y., et al.: Symmetry hierarchy of man-made objects. In: Computer Graphics Forum, vol. 30, pp. 287–296. Wiley Online Library (2011)Google Scholar
  54. 54.
    Wu, X., Wand, M., Hildebrandt, K., Kohli, P., Seidel, H.P.: Real-time symmetry-preserving deformation. In: Computer Graphics Forum, vol. 33, pp. 229–238. Wiley Online Library (2014)Google Scholar
  55. 55.
    Xiao, C., Jin, L., Nie, Y., Wang, R., Sun, H., Ma, K.L.: Content-aware model resizing with symmetry-preservation. Vis. Comput. 31(2), 155–167 (2015)CrossRefGoogle Scholar
  56. 56.
    Xu, K., et al.: Multi-scale partial intrinsic symmetry detection. ACM Trans. Graph. (TOG) 31(6), 181 (2012)Google Scholar
  57. 57.
    Xu, K., et al.: Partial intrinsic reflectional symmetry of 3D shapes. In: ACM Transactions on Graphics (TOG), vol. 28, p. 138. ACM (2009)Google Scholar
  58. 58.
    Yoshiyasu, Y., Yoshida, E., Guibas, L.: Symmetry aware embedding for shape correspondence. Comput. Graph. 60, 9–22 (2016)CrossRefGoogle Scholar
  59. 59.
    Zelditch, S.: Eigenfunctions and nodal sets. Surv. Differ. Geom. 18(1), 237–308 (2013)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Zheng, Q., et al.: Skeleton-intrinsic symmetrization of shapes. In: Computer Graphics Forum, vol. 34, pp. 275–286. Wiley Online Library (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Electrical EngineeringIndian Institute of Technology GandhinagarGandhinagarIndia

Personalised recommendations