Skip to main content

A Model-Free Comorbidities-Based Events Prediction in ICU Unit

  • Conference paper
  • First Online:
Artificial Intelligence and Natural Language (AINL 2018)

Abstract

In this work we focus on recently introduced “medical concept vectors” (MCV) extracted from electronic health records (EHR), explore in similar manner several methods useful for patient’s medical history events prediction and provide our own novel state-of-the-art method to solve this problem. We use MCVs to analyze publicly-available EHR de-identified data, with strong focus on fair comparison of several different models applied to patient’s death, heart failure and chronic liver diseases (cirrhosis and fibrosis) prediction tasks. We propose ontology-based regularization method that can be used to pre-train MCV embeddings. The approach we use to predict these diseases and conditions can be applied to solve other prediction tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Corresponding ICD-9 codes are: 398.91, 402.01–402.91, 404.01–404.93, 428.0–428.43.

References

  1. Avati, A., Jung, K., Harman, S., Downing, L., Ng, A., Shah, N.H.: Improving palliative care with deep learning. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 311–316, November 2017. https://doi.org/10.1109/BIBM.2017.8217669

  2. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: predicting clinical events via recurrent neural networks. In: Doshi-Velez, F., Fackler, J., Kale, D., Wallace, B., Wiens, J. (eds.) Proceedings of the 1st Machine Learning for Healthcare Conference, Proceedings of Machine Learning Research, vol. 56, pp. 301–318. PMLR, Children’s Hospital LA, Los Angeles, CA, USA, 18–19 August 2016. http://proceedings.mlr.press/v56/Choi16.html

  3. Choi, E., et al.: Multi-layer representation learning for medical concepts. In: KDD, pp. 1495–1504 (2016)

    Google Scholar 

  4. Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J.: GRAM: graph-based attention model for healthcare representation learning. In: Knowledge Discovery and Data Mining (KDD) (2017)

    Google Scholar 

  5. Choi, Y., Chiu, C.Y.I., Sontag, D.: Learning low-dimensional representations of medical concepts. AMIA Jt. Summits Transl. Sci. Proc. 2016, 41–50 (2016)

    Google Scholar 

  6. Chollet, F., et al.: Keras (2015). https://github.com/keras-team/keras

  7. Farhan, W., Wang, Z., Huang, Y., Wang, S., Wang, F., Jiang, X.: A predictive model for medical events based on contextual embedding of temporal sequences. JMIR Med. Inf. 4, e39 (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148810/

    Article  Google Scholar 

  8. Johnson, A., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016). https://doi.org/10.1038/sdata.2016.35. http://www.nature.com/articles/sdata201635

    Article  Google Scholar 

  9. Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval. J. Doc. 60(5), 493–502 (2004)

    Article  MathSciNet  Google Scholar 

  10. McInnes, B.T., Pedersen, T., Pakhomov, S.V.: UMLS-interface and UMLS-similarity: open source software for measuring paths and semantic similarity. In: AMIA Annual Symposium Proceedings, pp. 431–435 (2009)

    Google Scholar 

  11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of Workshop at ICLR, vol. 2013, January 2013

    Google Scholar 

  12. Pyysalo, S., Ginter, F., Moen, H., Salakoski, T., Ananiadou, S.: Distributional semantics resources for biomedical text processing. In: Proceedings of LBM, pp. 39–44 (2013)

    Google Scholar 

  13. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, Malta, May 2010. http://is.muni.cz/publication/884893/en

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatiana Malygina or Ivan Drokin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malygina, T., Drokin, I. (2018). A Model-Free Comorbidities-Based Events Prediction in ICU Unit. In: Ustalov, D., Filchenkov, A., Pivovarova, L., Žižka, J. (eds) Artificial Intelligence and Natural Language. AINL 2018. Communications in Computer and Information Science, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-030-01204-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01204-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01203-8

  • Online ISBN: 978-3-030-01204-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics