Skip to main content

Statistical Learning of Lattice Option Pricing and Traders’ Behavior Using Ising Spin Model for Asymmetric Information Transitions

  • Conference paper
  • First Online:
  • 1797 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 857))

Abstract

Financial fluctuations are one type of complex problem to determine the market behavior. The study of such fluctuations and statistical (machine) learning methods to predict the option price changes has been done by many researchers in the past. With the advancement in technology, one can capture the complexities in the financial systems and use of deep statistical (machine) learning, and apply unique set of rules and principles to these multi-layered complex networks. This paper provides a framework for lattice option pricing to determine the state for choice-sets, as one such unique set, in complex financial networks. This is largely based on human intelligence that learns features of each individual stock, and their trade-off, pay-off, preferential attachment and strategic options in the decision-making process. This paper also focuses on cases where both price and demand fluctuates stochastically and where both buyers and sellers have asymmetric information with limited time for high-quality decisions at their disposal to encourage or deter behavioral change. The situation draws on statistical mechanics and Ising-spin approaches to derive computational methods that infer and explain patterns and themes from high-dimensional data to “manage the probable” as well as “lead the possibilities” for multi-stage optimal control in dynamic systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Spence, M.: Job market signaling. Q. J. Econ. 87(3), 355–374 (1973)

    Article  Google Scholar 

  2. Simon, H.A.: The structure of ill-structured problems. Artif. Intell. 4, 181–201 (1973/1984)

    Article  Google Scholar 

  3. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  4. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393, 440 (1998)

    Article  Google Scholar 

  5. Scholtes, I., Tessone, C.J.: Organic design of massively distributed systems: a complex networks perspective

    Google Scholar 

  6. Sen, P.: Location-based cognitive and predictive communication system. US Patent 9,026,139 (2015)

    Google Scholar 

  7. Rall, W., Shepherd, G.M.: Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J. Neurophysiol. 31, 884–915 (1968)

    Article  Google Scholar 

  8. Chen, M.-F.: From Markov Chains to Non-Equilibrium Particle Systems, p. 1992. World Scientific Publishing, River Edge (1992)

    Book  Google Scholar 

  9. Friedman, N.: Learning belief networks in the presence of missing values and hidden variables. In: Fisher, D. (ed.) Proceedings of the Fourteenth International Conference on Machine Learning, pp. 125—133. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  10. Larsen, M.D., Rubin, D.B.: Iterative automated record linkage using mixture models. J. Am. Stat. Assoc. 79, 32–41 (2001)

    Article  MathSciNet  Google Scholar 

  11. Erdo¨s, P., Renyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5 (1960)

    Google Scholar 

  12. Bollobás, B.: Random Graphs. Academic, London (1985)

    MATH  Google Scholar 

  13. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  14. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. Comput. Commun. Rev. 29, 251–262 (1999)

    Article  Google Scholar 

  15. Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., Pedreschi, D.: Foundations of multidimensional network analysis. In: International Conference on Advances in Social Networks Analysis and Mining, pp. 485–489 (2011)

    Google Scholar 

  16. Del Moral, P., Jacod, J., Protter, P.: The Monte-Carlo method for filtering with discrete time observations. Probab. Theory Relat. Fields 120, 346–368 (2001)

    Article  MathSciNet  Google Scholar 

  17. Kalwani, M.U.: Maximum likelihood estimation of the multinomial-Dirichlet distribution. Paper No. 741 (September), Krannert Graduate School of Management, Purdue University (1980)

    Google Scholar 

  18. Gefen, Y., Mandelbrot, B.B., Aharony, A.: Critical phenomena on fractal lattices. Phys. Rev. Lett. APS (1980)

    Google Scholar 

  19. Bianconi, G., Barabási, A.L.: Bose-Einstein condensation in complex networks. Phys. Rev. Lett. 86, 5632, 11 June 2001

    Article  Google Scholar 

  20. Berg, J., Lassig, M.: Correlated random networks. Phys. Rev. Lett. 89 (2002)

    Google Scholar 

  21. Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Breakdown of the Internet under intentional attack. Phys. Rev. Lett. 86, 3682 (2001)

    Article  Google Scholar 

  22. Shokrieh, F.: The monodromy pairing and discrete logarithm on the Jacobian of finite graphs. J. Math. Cryptol. 4 (2009, 2010)

    Google Scholar 

  23. Dotsenko, V.: Introduction to the Replica Theory of Disordered Statistical Systems. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  24. Yukalov, V.I., Sornette, D.: Physics of risk and uncertainty in quantum decision making. Eur. Phys. J. B 71, 533–548 (2009)

    Article  MathSciNet  Google Scholar 

  25. Lockwood, M.: Mind, Brain and the Quantum. Basil Blackwell, Oxford (1989)

    Google Scholar 

  26. Cheon, T., Takahashi, T.: Interference and inequality in quantum decision theory. Phys. Lett. A 375(2010), 100–104 (2010)

    Article  MathSciNet  Google Scholar 

  27. Cheon, T., Iqbal, A.: Bayesian nash equilibria and bell inequalities. Phys. Soc. Jpn. 77, 024801 (6p) (2008)

    Article  Google Scholar 

  28. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  29. Tversky, A., Shafir, E.: The disjunction effect in choice under uncertainty. Psychol. Sci. 3, 305–309 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sen, P., Ma, N.L. (2019). Statistical Learning of Lattice Option Pricing and Traders’ Behavior Using Ising Spin Model for Asymmetric Information Transitions. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2018. Advances in Intelligent Systems and Computing, vol 857. Springer, Cham. https://doi.org/10.1007/978-3-030-01177-2_1

Download citation

Publish with us

Policies and ethics