Skip to main content

qBitcoin: A Peer-to-Peer Quantum Cash System

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 858))

Included in the following conference series:

Abstract

A decentralized online quantum cash system, called qBitcoin, is given. We design the system which has great benefits of quantization in the following sense. Firstly, quantum teleportation technology is used for coin transaction, which prevents from the owner of the coin keeping the original coin data even after sending the coin to another. This was a main problem in a classical circuit and a blockchain was introduced to solve this issue. In qBitcoin, the double-spending problem never happens and its security is guaranteed theoretically by virtue of quantum information theory. Making a block is time consuming and the system of qBitcoin is based on a quantum chain, instead of blocks. Therefore, a payment can be completed much faster than Bitcoin. Moreover we employ quantum digital signature so that it naturally inherits properties of peer-to-peer (P2P) cash system as originally proposed in Bitcoin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Practically, we may also convert a classical private key k into a quantum private key \(|k\rangle \) and we consider a quantum one-way function \(|k\rangle \mapsto |f_k\rangle \). In this way the quantum private key \(|k\rangle \) is secure since nobody else but the owner can copy it by virtue of the no-cloning theorem and since it is impossible to invert \(|k\rangle \) from \(|f_k\rangle \).

References

  1. Nakamoto, S.: Bitcoin: a peer-to-peer electric cash system (2008). http://www.bitcoin.org/bitcoin.pdf

  2. Aggarwal, D., Brennen, G.K., Lee, T., Santha, M., Tomamichel, M.: Quantum attacks on Bitcoin, and how to protect against them. ArXiv e-prints, October 2017

    Google Scholar 

  3. Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008). EP –, 06 http://dx.doi.org/10.1038/nature07127

    Article  Google Scholar 

  4. Munro, W.J., Azuma, K., Tamaki, K., Nemoto, K.: Inside quantum repeaters. IEEE J. Sel. Top. Quantum Electron. 21(3), 78–90 (2015)

    Article  Google Scholar 

  5. Schoute, E., Mancinska, L., Islam, T., Kerenidis, I., Wehner, S.: Shortcuts to quantum network routing. CoRR, vol. abs/1610.05238 (2016). http://arxiv.org/abs/1610.05238

  6. Azuma, K., Mizutani, A., Lo, H.-K.: Fundamental rateloss trade-off for the quantum internet. Nature Commun. 7, 13 523 (2016). EP –, 11 http://dx.doi.org/10.1038/ncomms13523

    Article  Google Scholar 

  7. Rigovacca, L., Kato, G., Baeuml, S., Kim, M.S., Munro, W.J., Azuma, K.: Versatile relative entropy bounds for quantum networks. ArXiv e-prints, July 2017

    Google Scholar 

  8. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://link.aps.org/doi/10.1103/PhysRevLett.70.1895

    Article  MathSciNet  Google Scholar 

  9. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  Google Scholar 

  10. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998). http://science.sciencemag.org/content/282/5389/706

    Article  Google Scholar 

  11. Takeda, S., Mizuta, T., Fuwa, M., van Loock, P., Furusawa, A.: Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature 500(7462), 315–318 (2013). http://dx.doi.org/10.1038/nature12366

    Article  Google Scholar 

  12. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 50th Annual IEEE Symposium on Foundations of Computer Science. FOCS 2009, pp. 517–526. IEEE (2009)

    Google Scholar 

  13. Barz, S., Fitzsimons, J.F., Kashefi, E., Walther, P.: Experimental verification of quantum computation. Nat. Phys. 9(11), 727–731 (2013)

    Article  Google Scholar 

  14. Morimae, T., Fujii, K.: Blind quantum computation protocol in which alice only makes measurements. Phys. Rev. A 87, 050301 (2013). https://link.aps.org/doi/10.1103/PhysRevA.87.050301

    Article  Google Scholar 

  15. Morimae, T., Fujii, K.: Blind topological measurement-based quantum computation. Nat. Commun. 3, 1036 (2012)

    Article  Google Scholar 

  16. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  Google Scholar 

  17. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982). http://www.sciencedirect.com/science/article/pii/0375960182900846

    Article  Google Scholar 

  18. Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.: Quantum money from knots. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 276–289. ACM (2012)

    Google Scholar 

  19. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935). https://link.aps.org/doi/10.1103/PhysRev.47.777

    Article  Google Scholar 

  20. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and con tos5

    Google Scholar 

  21. Gottesman, D., Chuang, I.: Quantum Digital Signatures. eprint arXiv:quant-ph/0105032, May 2001

  22. Holevo, A.: Problems in the mathematical theory of quantum communication channels. Rep. Math. Phys. 12(2), 273–278 (1977). http://www.sciencedirect.com/science/article/pii/0034487777900106

    Article  MathSciNet  Google Scholar 

  23. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983). http://doi.acm.org/10.1145/1008908.1008920

    Article  Google Scholar 

  24. Aaronson, S.: Quantum Copy-Protection and Quantum Money. ArXiv e-prints, October 2011

    Google Scholar 

  25. Aaronson, S., Christiano, P.: Quantum Money from Hidden Subspaces. ArXiv e-prints, March 2012

    Google Scholar 

  26. Jogenfors, J.: Quantum Bitcoin: An Anonymous and Distributed Currency Secured by the No-Cloning Theorem of Quantum Mechanics. ArXiv e-prints, April 2016

    Google Scholar 

Download references

Acknowledgment

I was benefited by discussions with Keisuke Fujii, Hayato Hirai and Hiroto Hosoda. A part of this work was completed while I stayed at Sydney for ICML 2017. I thank the organizers and I am most grateful to the Tjandras, my host family, for their genuine hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ikeda, K. (2019). qBitcoin: A Peer-to-Peer Quantum Cash System. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2018. Advances in Intelligent Systems and Computing, vol 858. Springer, Cham. https://doi.org/10.1007/978-3-030-01174-1_58

Download citation

Publish with us

Policies and ethics