Chromaticity Improvement Using the MSR Model in Presence of Shadows

  • Mario Dehesa GonzalezEmail author
  • Alberto J. Rosales Silva
  • Francisco J. Gallegos Funes
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 858)


One of the main problems in digital images is the illumination conditions affecting different objects due to angle reflection and lightness in a scenario, to solve this the Retinex algorithm is proposed to estimate the illumination source due to the lighting conditions, which in turn causes that the artificial vision algorithms deliver little optimum visual results; particularly this phenomenon is caused by the shadows and the angles of the incident source that produces different reflections from different objects in a scene. So, in this article an algorithm is proposed to diminish the effect of the shadows present in the digital images using the method of Color Constancy of a pixel. The actual proposal presents good inherent characteristics preservation, such as contrast and poor visibility.


Shadows Retinex Color constancy Lightness Digital images 



The authors thank the Instituto Politécnico Nacional de México and CONACyT for their support in this research work.


  1. 1.
    Barrow, H., Tenenbaum, J.: Recovering intrinsic scene characteristics from images. Comput. Vis. Syst. 2, 3–26 (1978)Google Scholar
  2. 2.
    Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61, 1–11 (1971)CrossRefGoogle Scholar
  3. 3.
    Finlayson, G.D., Hordley, S.D.: Color constancy at a pixel. J. Opt. Soc. Am. A 18, 253–264 (2001)CrossRefGoogle Scholar
  4. 4.
    Graham, G.D., Drew, M.S., Funt, B.V.: Spectral sharpening: sensor transformations for improved color constancy. J. Opt. Soc. Am. 11, 1553–1563 (1994)CrossRefGoogle Scholar
  5. 5.
    Blake, A.: Boundary conditions for lightness computation in Mondrian World. Comput. Vis. Graph. Image Process. 32, 314–327 (1985)CrossRefGoogle Scholar
  6. 6.
    Ebner, M.: Color Constancy. Wiley-IS&T, Würzburg (2007)zbMATHGoogle Scholar
  7. 7.
    Rizzi, A., Gatta, C.: From retinex to automatic color equalization: issues in developing a new algorithm for unsupervised color equalization. J. Electron. Imaging 13, 75–85 (2004)CrossRefGoogle Scholar
  8. 8.
    Herscovitz, M., Yadid-Pecht, O.: A modified multi scale retinex algorithm with an improved global impression of brightness for wide dynamic range pictures. Mach. Vis. Appl. 15, 220–228 (2004)CrossRefGoogle Scholar
  9. 9.
    Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)CrossRefGoogle Scholar
  10. 10.
    Oppenheim, A.V., Schafer, R.W., Stockham Jr., T.G.: Nonlinear filtering of multiplied and convolved signals. IEEE Trans. Audio Electroacoust. 16, 437–466 (1968)CrossRefGoogle Scholar
  11. 11.
    Zhang, X., Wandell, B.A.: Colour image fidelity metrics evaluated using image distortion maps. Imaging Science and Techology Program, Department of Psychology (1998)Google Scholar
  12. 12.
    Schanda, J.: Colorimetry: Understanding the CIE System. Wiley-Interscience, New York (2007)CrossRefGoogle Scholar
  13. 13.
    Fairchild, M.D.: Color Appearance Models, 2nd edn. Wiley, New York (2005)Google Scholar
  14. 14.
    Tsagaris, V., Ghirstoulas, G., Anastassopoulos, V.: A measure for evaluation of the information content in color images. In: IEEE International Conference on Image Processing (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mario Dehesa Gonzalez
    • 1
    Email author
  • Alberto J. Rosales Silva
    • 1
  • Francisco J. Gallegos Funes
    • 1
  1. 1.ESIME Zacatenco, Señales y SistemasInstituto Politécnico NacionalMexico CityMexico

Personalised recommendations