Advertisement

Texture Classification Framework Using Gabor Filters and Local Binary Patterns

  • Farhan RiazEmail author
  • Ali Hassan
  • Saad Rehman
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 858)

Abstract

In this paper, a novel method towards rotation, scale and illumination invariant texture image classification is introduced. We exploit the useful rotation and scale characteristics of Gabor filters and illumination invariance characteristics of LBP, proposing image features which are invariant to the above mentioned imaging dynamics. The images are first filtered using Gabor filters followed by a summation of filter responses across scales. An LBP of the resulting features is calculated followed by an integral histogram of LBPs across various orientations of the Gabor filters. An experimental validation of the invariance of the descriptor is shown on a texture classification problem using two publicly available datasets: the USC-SIPI, and CUReT texture datasets. Our experiments show that the proposed descriptor outperforms the other methods that have been considered in this paper.

Keywords

Image texture Pattern classification Gabor filters 

References

  1. 1.
    Selvan, S., Ramakrishnan, S.: SVD-based modeling for texture classification using wavelets transformation. IEEE Trans. Image Process. 16(11), 2688 (2007)Google Scholar
  2. 2.
    Kamarainen, J.-K., Kyrki, V., Kmrinen, H.: Invariance properties of gabor filter based features - overview and applications. IEEE Trans. Image Process. 15(5), 1088 (2006)CrossRefGoogle Scholar
  3. 3.
    Riaz, F., Silva, F., Ribeiro, M., Coimbra, M.: Invariant gabor texture descriptors for classification of gastroenterology images. IEEE Trans. Biomed. Eng. 59(10), 2893–2904 (2012)CrossRefGoogle Scholar
  4. 4.
    Riaz, F., Hassan, A., Rehman, S., Qamar, U.: Texture classification using rotation-and scale-invariant gabor texture features. IEEE Signal Process. Lett. 20(6), 607–610 (2013)CrossRefGoogle Scholar
  5. 5.
    Xie, X., Dai, Q., Lam, K.M., Zhao, H.: Efficient rotation- and scale-invariant texture classification method based on gabor wavelets. J. Electron. Imaging 17(4), 1–7 (2008)CrossRefGoogle Scholar
  6. 6.
    Arivazhagan, S., Ganesan, L., Priyal, S.P.: Texture classification using gabor wavelets based rotation invariant features. Pattern Recognit. Lett. 27(16), 1976 (2006)CrossRefGoogle Scholar
  7. 7.
    Jafari-Khouzani, K., Soltanian-Zadehl, H.: Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 1004 (2005)CrossRefGoogle Scholar
  8. 8.
    Manthalkar, R., Biswas, P.K., Chatterji, B.N.: Rotation invariant texture classification using even symmetric gabor filters. Pattern Recognit. Lett. 24(12), 2061 (2003)CrossRefGoogle Scholar
  9. 9.
    Field, D.: Relations between the statistics of natural images and the response properties of cortical cells. IEE J. Radio Commun. Eng. 4(12), 2379 (1987)CrossRefGoogle Scholar
  10. 10.
    Granlund, D.H.: In search of a general picture processing operator. Comput. Graph. Image Process. 8, 155 (1978)CrossRefGoogle Scholar
  11. 11.
    Kmrinen, J.K.: Feature extraction using gabor filters. Ph.D. thesis, Lappeenranta University of Technology (2003)Google Scholar
  12. 12.
    Tao, D., Li, X., Wu, X., Maybank, S.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)CrossRefGoogle Scholar
  13. 13.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 29, 51 (1996)CrossRefGoogle Scholar
  14. 14.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  15. 15.
    Vapnik, V.: Estimation of Dependences Based on Empirical Data. Springer, New York (1979)zbMATHGoogle Scholar
  16. 16.
    Byun, H., Lee, S.W.: A survey of pattern recognition applications of support vector machines. Int. J. Pattern Recognit. Artif. Intell. 17(3), 459–486 (2003)CrossRefGoogle Scholar
  17. 17.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  18. 18.
    Weber, A.: The usc-sipi image database version 5. USC-SIPI Report 315, pp. 1–24 (1997)Google Scholar
  19. 19.
    Zhou, H., Wang, R., Wang, C.: A novel extended local-binary-pattern operator for texture analysis. Inf. Sci. 178(22), 4314–4325 (2008)CrossRefGoogle Scholar
  20. 20.
    Li, Z., Hayward, R., Walker, R., Liu, Y.: A biologically inspired object spectral-texture descriptor and its application to vegetation classification in power-line corridors. IEEE Geosci. Remote. Sens. Lett. 8(4), 631–635 (2011)CrossRefGoogle Scholar
  21. 21.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Gray scale and rotation invariant texture classification with local binary patterns. In: Computer Vision-ECCV 2000, pp. 404–420 (2000)CrossRefGoogle Scholar
  22. 22.
    Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62(1), 61 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations