Skip to main content

Optimal Design of Fuzzy PID Controller with CS Algorithm for Trajectory Tracking Control

  • Conference paper
  • First Online:
Book cover Intelligent Computing (SAI 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 858))

Included in the following conference series:

Abstract

A fuzzy PID controller tuned by Cuckoo search (CS) algorithm is proposed to control a highly nonlinear 3 DOF robotic manipulator for trajectory tracking. For a fair comparison between the traditional PID and fractional order PID (FOPID) controllers, the tuning of the parameters for the controllers is done using CS. This optimization algorithm uses an optimal tuning in time domain by minimizing the performance criterion, i.e. the sum of integral of multiplication of time with absolute error (ITAE) for each joint. The robustness testing of the tuned controllers for external disturbance and different trajectory is also investigated. Finally, the simulation results reveal that the proposed fuzzy PID controller can not only provide excellent tracking performance in Cartesian and joint space, but also enhances the robustness of the system for external disturbance and different trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spong, M., Vidyasagar, M.: Robot Dynamic and Control. Wiley, UK (2004)

    Google Scholar 

  2. Varol, H.A., Bingul, Z.: A new PID tuning technique using ant algorithm. In: Proceedings of the 2004 American Control Conference, Boston, MA, USA, vol. 3, pp. 2154–2159 (2004)

    Google Scholar 

  3. Podlubny, I.: Fractional-order systems and PI λDμ controllers. IEEE Trans. Autom. Control 44, 208–214 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bingul, Z., Karahan, O.: Fractional PID controllers tuned by evolutionary algorithms for robot trajectory control. Turk. J. Electr. Eng. Comput. Sci. 20, 1123–1136 (2012)

    Google Scholar 

  5. Sharma, R., Gaur, P., Mittal, A.P.: Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans. 58, 279–291 (2015)

    Article  Google Scholar 

  6. Bingul, Z., Karahan, O.: Tuning of fractional PID controllers using PSO algorithm for robot trajectory control. In: 2011 IEEE International Conference on Mechatronics, Istanbul, pp. 955–960 (2011)

    Google Scholar 

  7. Lee, C.C.C.: Fuzzy logic in control systems: fuzzy logic controller, Part II. IEEE Trans. Syst. Man. Cybern. 20, 404–418 (1990)

    Article  MathSciNet  Google Scholar 

  8. Fereidouni, A., Mohammad, M.A.S., Moayed, M.: A new adaptive configuration of PID type fuzzy logic controller. ISA Trans. 56, 220–240 (2015)

    Article  Google Scholar 

  9. Er, M.J., Sun, Y.L.: Hybrid fuzzy proportional – integral plus conventional derivative control of linear and nonlinear systems. IEEE Trans. Ind. Electron. 48(6), 1109–1117 (2001)

    Article  Google Scholar 

  10. Meza, J.L., Santibáñez, V., Soto, R., Llama, M.: Fuzzy self-tuning PID semiglobal regulator for robot manipulators. IEEE Trans. Ind. Electron. 59, 2709–2717 (2012)

    Article  Google Scholar 

  11. Mudi, R.K., Pal, N.R.: A robust self-tuning scheme for PI-and PD type fuzzy controllers. IEEE Trans. Fuzzy Syst. 7(1), 2–16 (1999)

    Article  Google Scholar 

  12. Woo, Z.W., Chung, H.Y., Lin, J.J.: A PID type fuzzy controller with self-tuning scaling factors. Fuzzy Sets Syst. 115(2), 321–326 (2000)

    Article  Google Scholar 

  13. Yesil, E., Guzelkaya, M., Eksin, I.: Self tuning fuzzy PID type load and frequency controller. Energy Convers. Manag. 45(3), 377–390 (2004)

    Article  Google Scholar 

  14. Reznik, L., Ghanayem, O., Bourmistrov, A.: PID plus fuzzy controller structures as a design base for industrial applications. Eng. Appl. Artif. Intell. 13(4), 419–430 (2000)

    Article  Google Scholar 

  15. Sahu, B.K., Pati, S., Panda, S.: Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional–integral derivative controller for automatic generation control of interconnected power system. IET Gener. Transm. Distrib. 8(11), 1789–1800 (2014)

    Article  Google Scholar 

  16. Yogesh, K.B., Hitesh, D.M., Houria, S., Surekha, B.: Frequency stabilization for multi-area thermal-hydro power system using genetic algorithm-optimized fuzzy logic controller in deregulated environment. Electr. Power Compon. Syst. 43(2), 146–156 (2015)

    Article  Google Scholar 

  17. Priyambada, S., Sahu, B.K., Mohanty, P.K.: Fuzzy-PID controller optimized TLBO approach on automatic voltage regulator. In: 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, pp. 1–6 (2015)

    Google Scholar 

  18. Zhao, J., Han, L., Wang, L., Yu, Z.: The fuzzy PID control optimized by genetic algorithm for trajectory tracking of robot arm. In: 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, pp. 556–559 (2016)

    Google Scholar 

  19. Lu, X., Liu, M.: A fuzzy logic controller tuned with PSO for delta robot trajectory control. In: IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, pp. 4345–4351 (2015)

    Google Scholar 

  20. Karahan, O., Bingul, Z.: Modelling and identification of STAUBLI RX-60 robot. In: 2008 IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, pp. 78–83 (2008)

    Google Scholar 

  21. Yang, X.-S., Deb, S.: Cuckoo search via Levy flights. In: Proceedings of World Congress on Nature and Biologically Inspired Computing (NaBIC) IEEE Publications, USA, pp. 210–214 (2009)

    Google Scholar 

  22. Valério, D., Sá da Costa, J.: Ninteger: a non-integer control toolbox for MatLab. In: Proceedings of fractional differentiation and its applications, Bordeaux (2004)

    Google Scholar 

  23. Oustaloup: La commande CRONE: commande robuste d’ordre non entire. Herme’s, Paris (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oğuzhan Karahan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karahan, O., Ataşlar-Ayyıldız, B. (2019). Optimal Design of Fuzzy PID Controller with CS Algorithm for Trajectory Tracking Control. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2018. Advances in Intelligent Systems and Computing, vol 858. Springer, Cham. https://doi.org/10.1007/978-3-030-01174-1_14

Download citation

Publish with us

Policies and ethics