Advertisement

Optimal Design of Fuzzy PID Controller with CS Algorithm for Trajectory Tracking Control

  • Oğuzhan KarahanEmail author
  • Banu Ataşlar-Ayyıldız
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 858)

Abstract

A fuzzy PID controller tuned by Cuckoo search (CS) algorithm is proposed to control a highly nonlinear 3 DOF robotic manipulator for trajectory tracking. For a fair comparison between the traditional PID and fractional order PID (FOPID) controllers, the tuning of the parameters for the controllers is done using CS. This optimization algorithm uses an optimal tuning in time domain by minimizing the performance criterion, i.e. the sum of integral of multiplication of time with absolute error (ITAE) for each joint. The robustness testing of the tuned controllers for external disturbance and different trajectory is also investigated. Finally, the simulation results reveal that the proposed fuzzy PID controller can not only provide excellent tracking performance in Cartesian and joint space, but also enhances the robustness of the system for external disturbance and different trajectory.

Keywords

Fractional order PID Fuzzy PID Three DOF manipulator Trajectory tracking 

References

  1. 1.
    Spong, M., Vidyasagar, M.: Robot Dynamic and Control. Wiley, UK (2004)Google Scholar
  2. 2.
    Varol, H.A., Bingul, Z.: A new PID tuning technique using ant algorithm. In: Proceedings of the 2004 American Control Conference, Boston, MA, USA, vol. 3, pp. 2154–2159 (2004)Google Scholar
  3. 3.
    Podlubny, I.: Fractional-order systems and PI λDμ controllers. IEEE Trans. Autom. Control 44, 208–214 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bingul, Z., Karahan, O.: Fractional PID controllers tuned by evolutionary algorithms for robot trajectory control. Turk. J. Electr. Eng. Comput. Sci. 20, 1123–1136 (2012)Google Scholar
  5. 5.
    Sharma, R., Gaur, P., Mittal, A.P.: Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans. 58, 279–291 (2015)CrossRefGoogle Scholar
  6. 6.
    Bingul, Z., Karahan, O.: Tuning of fractional PID controllers using PSO algorithm for robot trajectory control. In: 2011 IEEE International Conference on Mechatronics, Istanbul, pp. 955–960 (2011)Google Scholar
  7. 7.
    Lee, C.C.C.: Fuzzy logic in control systems: fuzzy logic controller, Part II. IEEE Trans. Syst. Man. Cybern. 20, 404–418 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fereidouni, A., Mohammad, M.A.S., Moayed, M.: A new adaptive configuration of PID type fuzzy logic controller. ISA Trans. 56, 220–240 (2015)CrossRefGoogle Scholar
  9. 9.
    Er, M.J., Sun, Y.L.: Hybrid fuzzy proportional – integral plus conventional derivative control of linear and nonlinear systems. IEEE Trans. Ind. Electron. 48(6), 1109–1117 (2001)CrossRefGoogle Scholar
  10. 10.
    Meza, J.L., Santibáñez, V., Soto, R., Llama, M.: Fuzzy self-tuning PID semiglobal regulator for robot manipulators. IEEE Trans. Ind. Electron. 59, 2709–2717 (2012)CrossRefGoogle Scholar
  11. 11.
    Mudi, R.K., Pal, N.R.: A robust self-tuning scheme for PI-and PD type fuzzy controllers. IEEE Trans. Fuzzy Syst. 7(1), 2–16 (1999)CrossRefGoogle Scholar
  12. 12.
    Woo, Z.W., Chung, H.Y., Lin, J.J.: A PID type fuzzy controller with self-tuning scaling factors. Fuzzy Sets Syst. 115(2), 321–326 (2000)CrossRefGoogle Scholar
  13. 13.
    Yesil, E., Guzelkaya, M., Eksin, I.: Self tuning fuzzy PID type load and frequency controller. Energy Convers. Manag. 45(3), 377–390 (2004)CrossRefGoogle Scholar
  14. 14.
    Reznik, L., Ghanayem, O., Bourmistrov, A.: PID plus fuzzy controller structures as a design base for industrial applications. Eng. Appl. Artif. Intell. 13(4), 419–430 (2000)CrossRefGoogle Scholar
  15. 15.
    Sahu, B.K., Pati, S., Panda, S.: Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional–integral derivative controller for automatic generation control of interconnected power system. IET Gener. Transm. Distrib. 8(11), 1789–1800 (2014)CrossRefGoogle Scholar
  16. 16.
    Yogesh, K.B., Hitesh, D.M., Houria, S., Surekha, B.: Frequency stabilization for multi-area thermal-hydro power system using genetic algorithm-optimized fuzzy logic controller in deregulated environment. Electr. Power Compon. Syst. 43(2), 146–156 (2015)CrossRefGoogle Scholar
  17. 17.
    Priyambada, S., Sahu, B.K., Mohanty, P.K.: Fuzzy-PID controller optimized TLBO approach on automatic voltage regulator. In: 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, pp. 1–6 (2015)Google Scholar
  18. 18.
    Zhao, J., Han, L., Wang, L., Yu, Z.: The fuzzy PID control optimized by genetic algorithm for trajectory tracking of robot arm. In: 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, pp. 556–559 (2016)Google Scholar
  19. 19.
    Lu, X., Liu, M.: A fuzzy logic controller tuned with PSO for delta robot trajectory control. In: IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, pp. 4345–4351 (2015)Google Scholar
  20. 20.
    Karahan, O., Bingul, Z.: Modelling and identification of STAUBLI RX-60 robot. In: 2008 IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, pp. 78–83 (2008)Google Scholar
  21. 21.
    Yang, X.-S., Deb, S.: Cuckoo search via Levy flights. In: Proceedings of World Congress on Nature and Biologically Inspired Computing (NaBIC) IEEE Publications, USA, pp. 210–214 (2009)Google Scholar
  22. 22.
    Valério, D., Sá da Costa, J.: Ninteger: a non-integer control toolbox for MatLab. In: Proceedings of fractional differentiation and its applications, Bordeaux (2004)Google Scholar
  23. 23.
    Oustaloup: La commande CRONE: commande robuste d’ordre non entire. Herme’s, Paris (1991)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Kocaeli UniversityİzmitTurkey

Personalised recommendations