Skip to main content

A Lower Bound on the Average Identification Time in a Passive RFID System

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2018, ruSMART 2018)

Abstract

One of the most well-known standards for radio frequency identification (RFID), the standard ISO 18000-6C, collects the requirements for RFID readers and tags and regulates respective communication protocols. In particular, the standard introduces the so-called Q-algorithm resolving conflicts in the channel (which occur when several RFID tags respond simultaneously). As of today, a vast amount of existing literature addresses various modifications of the Q-algorithm; however, none of them is known to significantly reduce the average identification time (i.e., the time to identify all proximate tags). In this work, we derive a lower bound for the average identification time in an RFID system. Furthermore, we demonstrate that in case of an error-free channel, the performance of the legacy Q-algorithm is reasonably close to the proposed lower bound; however, for the error-prone environment, this gap may substantially increase, thereby indicating the need for new identification algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 16 December 2018

    The acknowledgement section of this paper originally stated that “the work was supported by RUDN University Program 5-100.” The reference to this was modified to “the publication has been prepared with the support of the RUDN University Program 5-100” in the acknowledgement section at the request of the volume editor.

References

  1. Arjona, L., Landaluce, H., Perallos, A., Lopez-Garcia, P., Cmiljanic, N.: Analysis of RFID anti-collision protocols based on the standard EPCglobal Class-1 Generation-2. In: Proceedings of 21th European Wireless Conference on European Wireless 2015, pp. 1–6. VDE (2015)

    Google Scholar 

  2. Global, EPC.: EPC radio-frequency identity protocols class-1 generation-2 UHF RFID protocol for communications at 860 MHz–960 MHz. Version 1, 23 (2008)

    Google Scholar 

  3. Instruments, Texas: TI UHF Gen2 Protocol Reference Guide

    Google Scholar 

  4. Kamrani, A.: Design and Development of a State Transition Table for the EPC global UHF Class 1 Gen2 RFID standard. Ph.D. thesis, University of Pittsburgh (2011)

    Google Scholar 

  5. Namboodiri, V., DeSilva, M., Deegala, K., Ramamoorthy, S.: An extensive study of slotted ALOHA-based RFID anti-collision protocols. Comput. Commun. 35(16), 1955–1966 (2012)

    Article  Google Scholar 

  6. Ometov, A., et al.: Secure and connected wearable intelligence for content delivery at a mass event: a case study. J. Sens. Actuator Netw. 6(2), 5 (2017)

    Article  Google Scholar 

  7. Prudanov, A., et al.: A trial of yoking-proof protocol in RFID-based smart-home environment. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2016. CCIS, vol. 678, pp. 25–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51917-3_3

    Chapter  Google Scholar 

  8. Uysal, I., Khanna, N.: Q-frame-collision-counter: a novel and dynamic approach to RFID Gen 2’s Q algorithm. In: 2015 IEEE International Conference on RFID Technology and Applications (RFID-TA), pp. 120–125. IEEE (2015)

    Google Scholar 

  9. Zheng, F., Kaiser, T.: Adaptive ALOHA anti-collision algorithms for RFID systems. EURASIP J. Embed. Syst. 2016(1), 7 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The publication has been prepared with the support of the “RUDN University Program 5-100.” The work of N. Stepanov, N. Matveev, and A. Turlikov is supported by scientific project No. 8.8540.2017/8.9 “Development of data transmission algorithms in IoT systems with constraints on the devices complexity.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Stepanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stepanov, N., Matveev, N., Galinina, O., Turlikov, A. (2018). A Lower Bound on the Average Identification Time in a Passive RFID System. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2018 2018. Lecture Notes in Computer Science(), vol 11118. Springer, Cham. https://doi.org/10.1007/978-3-030-01168-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01168-0_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01167-3

  • Online ISBN: 978-3-030-01168-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics