Energy - Aware Offloading Algorithm for Multi-level Cloud Based 5G System

  • Abdelhamied A. AteyaEmail author
  • Ammar Muthanna
  • Anastasia Vybornova
  • Pyatkina Darya
  • Andrey Koucheryavy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11118)


Mobile edge computing (MEC) is a recent communication paradigm developed mainly for cellular networks. MEC is introduced to improve the whole network efficiency by offloading its operations to nearby clouds. Cellular networks are able to offer the cloud computing capabilities at the edge of the radio access network through MEC servers. Mobiles services and tasks can either be executed at the mobile device or offloaded to the edge server. In this work, we provide a latency aware and energy aware offloading algorithm for the 5G multilevel edge computing based cellular system. The algorithm enables the mobile device to request offloading or decide the local execution independently based on the available resources at the mobile device and edge server. The algorithm takes into consideration the energy consumption to handle the service and make the offloading decision that achieves higher energy performance. The system is simulated and numerical results are included for performance evaluation.


Latency Offloading Mobile edge computing Energy consumption 5G 



The publication has been prepared with the support of the “RUDN University Program 5-100”.


  1. 1.
    Ateya, A., Muthanna, A., Koucheryavy, A.: 5G framework based on multi-level edge computing with D2D enabled communication. In: 2018 20th International Conference on Advanced Communication Technology (ICACT), pp. 507–512. IEEE, February 2018Google Scholar
  2. 2.
    Zheng, K., Zhao, L., Mei, J., Dohler, M., Xiang, W., Peng, Y.: 10 Gb/s hetsnets with millimeter-wave communications: access and networking-challenges and protocols. IEEE Commun. Mag. 53(1), 222–231 (2017)CrossRefGoogle Scholar
  3. 3.
    Tudzarov, A., Gelev, S.: Requirements for next generation business transformation and their implementation in 5G architecture. Int. J. Comput. Appl. 162(2), 31–35 (2017)Google Scholar
  4. 4.
    Ateya, A.A., Muthanna, A., Gudkova, I., Abuarqoub, A., Vybornova, A., Koucheryavy, A.: Development of intelligent core network for tactile internet and future smart systems. J. Sens. Actuator Netw. 7(1), 1 (2018)CrossRefGoogle Scholar
  5. 5.
    Mobile Edge Computing A key technology towards 5G. ETSI White Paper, No. 11, September 2015Google Scholar
  6. 6.
    Ateya, A., Vybornova, A., Kirichek, R., Koucheryavy, A.: Multilevel cloud based tactile internet system. In: IEEE-ICACT2017 International Conference, Korea, Febuary 2017Google Scholar
  7. 7.
    Chen, M., Hao, Y.: Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wang, F., Xu, J., Wang, X., Cui, S.: Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans. Wirel. Commun. 17(3), 1784–1797 (2018)CrossRefGoogle Scholar
  9. 9.
    Zhang, K., et al.: Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access 4, 5896–5907 (2016)CrossRefGoogle Scholar
  10. 10.
    Cardellini, V., Personé, V.D.N., Valerio, V.D., Facchinei, F., Grassi, V., Presti, F.L., Piccialli, V.: A game-theoretic approach to computation offloading in mobile cloud computing. Math. Program. 157(2), 421–449 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lyu, X., et al.: Selective offloading in mobile edge computing for the green Internet of Things. IEEE Network 32(1), 54–60 (2018)CrossRefGoogle Scholar
  12. 12.
    Ateya, Abdelhamied A., Vybornova, A., Samouylov, K., Koucheryavy, A.: System Model for Multi-level Cloud Based Tactile Internet System. In: Koucheryavy, Y., Mamatas, L., Matta, I., Ometov, A., Papadimitriou, P. (eds.) WWIC 2017. LNCS, vol. 10372, pp. 77–86. Springer, Cham (2017). Scholar
  13. 13.
    Kartun-Giles, A., Jayaprakasam, S., Kim, S.: Euclidean matchings in ultra-dense networks. IEEE Commun. Lett. (2018)Google Scholar
  14. 14.
    Miettinen, A.P., Nurminen, J.K.: Energy efficiency of mobile clients in cloud computing. In: Proceedings of the 2010 USENIX Conference on Hot Topics in Cloud Computing. (HotCloud), pp. 1–7, June 2010Google Scholar
  15. 15.
    Chun, B., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execution between mobile device and cloud. In: Proceedings of the Sixth cConference on Computer Systems, pp. 301–314. ACM (2011)Google Scholar
  16. 16.
    Huang, D., Wu, H.: Mobile Cloud Computing: Foundations and Service Models. Morgan Kaufmann, San Francisco (2017)Google Scholar
  17. 17.
    Habak, K., Ammar, M., Harras, K.A., Zegura, E.: Femto clouds: Leveraging mobile devices to provide cloud service at the edge. In: 2015 IEEE 8th International Conference on Cloud Computing (CLOUD), pp. 9–16. IEEE (2015)Google Scholar
  18. 18.
    Mao, Y., Zhang, J., Letaief, K.B.: Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J. Sel. Areas Commun. 34(12), 3590–3605 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Abdelhamied A. Ateya
    • 1
    • 2
    Email author
  • Ammar Muthanna
    • 2
    • 3
  • Anastasia Vybornova
    • 2
  • Pyatkina Darya
    • 3
  • Andrey Koucheryavy
    • 2
  1. 1.Electronics and Communications EngineeringZagazig UniversityZagazigEgypt
  2. 2.St. Petersburg State University of TelecommunicationSt. PetersburgRussia
  3. 3.Peoples’ FriendshipUniversity of Russia (RUDN University)MoscowRussia

Personalised recommendations