Performance Analysis of Cognitive Femtocell Network with Ambient RF Energy Harvesting

  • Jerzy MartynaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11118)


Radio frequency (RF) energy harvesting is a promising technique to collect energy from the concurrent downlink transmissions. This energy after converting it into DC power can power up such devices as cell phones, Wi-Fi networks, etc. In this paper, a model of RF energy harvesting in the cognitive femtocell is presented. Additionally, an algorithm to maximise the average throughput of the secondary system over a given slot time is given. Increased throughput allows to improve the energy harvesting in the femtocell. Moreover, the effect of varying the different parameters such as the spatial density of BSs, significantly affects the values of energy harvesting in cognitive femtocell network. The obtained results of simulation tests confirm the obtained theoretical results of energy harvesting in cognitive femtocell networks.


Cognitive radio Femtocell network RF energy harvesting Spectrum sharing Power control 


  1. 1.
    Arslan, H.: Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems. Signals and Communication Technology. Springer, Dordrecht (2007). Scholar
  2. 2.
    Elmaghraby, H.M., Qin, D., Ding, Z.: Downlink scheduling and power allocation in cognitive femtocell networks. In: Weichold, M., Hamdi, M., Shakir, M.Z., Abdallah, M., Karagiannidis, G.K., Ismail, M. (eds.) CrownCom 2015. LNICST, vol. 156, pp. 92–105. Springer, Cham (2015). Scholar
  3. 3.
    Grover, P., Sahai, A.: Shanon meets Tesla: wireless information and power transfer. In: 1010 IEEE International Symposium on Information Theory, pp. 2363–2367 (2010)Google Scholar
  4. 4.
    Harba, A.: Energy harvesting: state-of-the-art. Renew. Energy 36(10), 2641–2654 (2011)CrossRefGoogle Scholar
  5. 5.
    Ho, C.K., Zhang, R.: Optimal Energy allocation for wireless communications with energy harvesting constraints. IEEE Trans. Signal Process. 60(9), 4808–4818 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Huang, X., Shi, L., Zhang, C., Zhang, D., Chen, Q.: Distributed resource allocation with imperfect spectrum sensing information and channel uncertainty in cognitive femtocell Networks. EURASIP J. Wirel. Commun. Netw. 2017, 201 (2017)CrossRefGoogle Scholar
  7. 7.
    Kirkidis, I., Timortheou, S., Sasaki, S.: RF energy transfer for cooperative networks: data relaying or energy harvesting? IEEE Commun. Lett. 16(11), 1772–1775 (2012)CrossRefGoogle Scholar
  8. 8.
    Mitola, J., Maguire, G.Q.: Cognitive radio: making software radios more personal. IEEE Pers. Commun. Mag. 6(4), 13–18 (1999)CrossRefGoogle Scholar
  9. 9.
    Nasir, A.A., Zhou, X., Durrani, S., Kennedy, R.A.: Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Comm. 12(7), 3622–3636 (2013)CrossRefGoogle Scholar
  10. 10.
    Ostaffe, H.: Power out of thin air: ambient RF energy harvesting for wireless sensors (2010).
  11. 11.
    Paradiso, J.A., Starner, T.: Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 4(1), 18–27 (2005)CrossRefGoogle Scholar
  12. 12.
    Sakr, A.H., Hossain, E.: Analysis of multi-tier uplink cellular networks with energy harvesting and flexible cell association. In: IEEE Global Communications Conference (2014)Google Scholar
  13. 13.
    Tariq, F., Dooley, L.S.: Cognitive femtocell networks. In: Grace, D., Zhang, H. (eds.) Cognitive Communications: Distributed Artificial Intelligence (DAI), Regulatory Policy and Economics, Implementation. Wiley (2012)Google Scholar
  14. 14.
    Li, Q., Feng, Z., Li, W., Liu, Y., Zhang, P.: Joint access and power control in cognitive femtocell networks. In: IEEE International Conference on Wireless Communicational and Signal Processing (2011)Google Scholar
  15. 15.
    Sakr, A.H., Hossain, E.: Analysis of K-Tier uplink cellular networks with ambient RF energy harvesting. IEEE J. Sel. Areas Commun. 33(10), 2226–2238 (2015)CrossRefGoogle Scholar
  16. 16.
    Shah, S.T., Choi, K.W., Hasan, S.F., Chung, M.Y.: Energy harvesting and information processing in two-way multiplicative relay networks. Electron. Lett. 52(9), 751–753 (2016)CrossRefGoogle Scholar
  17. 17.
    Shah, S.T., Munir, D., Chung, M.Y., Choi, K.W.: Information processing and wireless energy harvesting in two-way amplify-and forward relay networks. In: 1016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5 (2016)Google Scholar
  18. 18.
    Usman, M., Koo, I.: Access strategy for hybrid underlay-overlay cognitive radios with energy harvesting. IEEE Sens. J. 14(9), 3164–3173 (2014)CrossRefGoogle Scholar
  19. 19.
    Varshney, L.R.: Transporting information and energy simultaneously. In: 2008 IEEE International Symposium on Information Theory, pp. 1612–1616 (2009)Google Scholar
  20. 20.
    Zhang, Q., Kassam, S.A.: Finite-state Markov model for Rayleigh fading channels. IEEE Trans. Commun. 47(11), 1688–1692 (1999)CrossRefGoogle Scholar
  21. 21.
    Zhou, X., Zhang, R., Ho, C.K.: Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans. Commun. 61(11), 4754–4767 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Computer Science, Faculty of Mathematics and Computer ScienceJagiellonian UniversityCracowPoland

Personalised recommendations