Skip to main content

Creating a Schedule for Parallel Execution of Tasks Based on the Adjacency Lists

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2018, ruSMART 2018)

Abstract

The article presents a method for transforming algorithm’s information graph using adjacency lists. Algorithm’s information graph always has a large number of vertices. For most algorithms, this graph contains more than 100 vertices. Manual analysis of this graph for the presence of internal parallelism is very difficult. The proposed method does not use conventional adjacency matrix for storing information about the connections between vertices and the adjacency lists. Adjacency lists allow to store information about the graph in a compressed form. As a result, the researcher gets a schedule of the algorithm on a computer, allowing parallel execution. The presented method can be successfully applied to queries in databases, to the distribution of tasks between nodes of a wireless network, to solving problems with large volumes of data in the field of the Internet of things.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, B., Tang, L., Xie, J., Wang, X., Song, A.: Parallel numerical simulations of three-dimensional electromagnetic radiation with MPI-CUDA paradigms. Math. Probl. Eng. 2015, 9 pages (2015). Article ID 823426

    Google Scholar 

  2. Qin, J., Lu, Y., Zhong, Y.: Parallel algorithm for wireless data compression and encryption. J. Sensors 2017, 11 pages (2017). Article ID 4209397

    Google Scholar 

  3. Gong, C., Bao, W., Tang, G., Jiang, Y., Liu, J.: A parallel algorithm for the two-dimensional time fractional diffusion equation with implicit difference method. Sci. World J. 2014, 8 pages (2014). Article ID 219580

    Google Scholar 

  4. Ma, X., Liu, S., Xiao, M., Xie, G.: Parallel algorithm with parameters based on alternating direction for solving banded linear systems. Math. Probl. Eng. 2014, 8 pages (2014). Article ID 752651

    Google Scholar 

  5. Hou, J., Lv, Q., Xiao, M.: A parallel preconditioned modified conjugate gradient method for large sylvester matrix equation. Math. Probl. Eng. 2014, 7 pages (2014). Article ID 598716

    Google Scholar 

  6. Yu, D.-X., Yang, Z.-S., Yu, Y., Jiang, X.-R.: Research on large-scale road network partition and route search method combined with traveler preferences. Math. Probl. Eng. 2013, 8 pages (2013). Article ID 950876

    Google Scholar 

  7. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Processings AFIPS Spring Joint Computer Conference, Reston, pp. 483–485. AFIPS Press, VA (1967)

    Google Scholar 

  8. Ware, W.: The ultimate computer. IEEE Spectrum 9, 84–91 (1972)

    Article  Google Scholar 

  9. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing, Second Edition. Addison Wesley, Reading (2003)

    Google Scholar 

  10. Gergel, V.P., Strongin, R.G.: Parallel Computing for Multiprocessor Computers. NGU Publ, Nizhnij Novgorod (2003). (in Russian)

    Google Scholar 

  11. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP, 1st edn. McGraw-Hill Education, New York (2003)

    Google Scholar 

  12. Wittwer, T.: An Introduction to Parallel Programming, VSSD uitgeverij (2006)

    Google Scholar 

  13. Tiwari, A., Tabatabaee, V., Hollingsworth, J.K.: Tuning parallel applications in parallel. Parallel Comput. 35(8–9), 475–492 (2009)

    Article  Google Scholar 

  14. Mubarak, M., Seol, S., Qiukai, L., Shephard, M.S.: A parallel ghosting algorithm for the flexible distributed mesh database. Sci. Program. 21(1–2), 17–42 (2013)

    Google Scholar 

  15. Kruatrachue, B., Lewis, T.: Grain size determination for parallel processing. IEEE Softw. 5(1), 23–32 (1988)

    Article  Google Scholar 

  16. Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization with affine partitions. Parallel Comput. 24(3–4), 445–475 (1998)

    Article  MathSciNet  Google Scholar 

  17. Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: Top500 supercomputing sites (2015)

    Google Scholar 

  18. Yang, T., Gerasoulis, A.: DSC: scheduling parallel tasks on an unbounded number of processors. IEEE Trans. Parallel Distrib. Syst. 5(9), 951–967 (1994)

    Article  Google Scholar 

  19. Darbha, S., Agrawal, D.P.: Optimal scheduling algorithm for distributed memory machines. IEEE Trans. Parallel Distrib. Syst. 9(1), 87–95 (1998)

    Article  Google Scholar 

  20. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in hard real-time environment. J. ACM 20(1), 46–61 (1973)

    Article  MathSciNet  Google Scholar 

  21. Marte, B.: Preemptive scheduling with release times, deadlines and due times. J. ACM 29(3), 812–829 (1982)

    Article  MathSciNet  Google Scholar 

  22. Burns, A.: Scheduling hard real-time systems: a review. Softw. Eng. J. 6(3), 116–128 (1991)

    Article  MathSciNet  Google Scholar 

  23. Stankovic, J.A.: Implications of classical scheduling results for real-time systems. IEEE Computer Society Press (1995)

    Google Scholar 

  24. Darbha, S., Agrawal, D.P.: A task duplication based scalable scheduling algorithm for distributed memory systems. IEEE Trans. Parallel Distrib. Syst. 46(1), 15–27 (1997)

    MATH  Google Scholar 

  25. Tzen, T.H., Ni, L.M.: Trapezoid self-scheduling: a practical scheduling scheme for parallel compilers. IEEE Trans. Parallel Distrib. Syst. 4, 87–98 (1993)

    Article  Google Scholar 

  26. Sinnen, O., Sousa, L.A.: Communication contention in task scheduling. IEEE Trans. Parallel Distrib. Syst. 16, 503–515 (2005)

    Article  Google Scholar 

  27. Wu, A.S., Yu, H., Jin, S., Lin, K.-C., Schiavone, G.: An incremental genetic algorithm approach to multiprocessor scheduling. IEEE Trans. Parallel Distrib. Syst. 15(9), 824–834 (2004)

    Article  Google Scholar 

  28. Kupriyanov, M.S., Shichkina, Y.A.: Applying the list method to the transformation of parallel algorithms into account temporal characteristics of operations. In: Proceedings of the 19th International Conference on Soft Computing and Measurements, SCM 2016, pp. 292–295. https://doi.org/10.1109/scm.2016.7519759, ISBN 978-146738919-8. 7519759

  29. Shichkina, Y., Kupriyanov, M., Al-Mardi, M.: Optimization algorithm for an information graph for an amount of communications. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2016. LNCS, vol. 9870, pp. 50–62. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46301-8_5

    Chapter  Google Scholar 

  30. Shichkina, Y., Degtyarev, A., Gushchanskiy, D., Iakushkin, O.: Application of optimization of parallel algorithms to queries in relational databases. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 366–378. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42108-7_28

    Chapter  Google Scholar 

Download references

Acknowledgments

The paper has been prepared within the scope of the state project “Initiative scientific project” of the main part of the state plan of the Ministry of Education and Science of Russian Federation (task № 2.6553.2017/8.9 BCH Basic Part).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Shichkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shichkina, Y., Kupriyanov, M. (2018). Creating a Schedule for Parallel Execution of Tasks Based on the Adjacency Lists. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2018 2018. Lecture Notes in Computer Science(), vol 11118. Springer, Cham. https://doi.org/10.1007/978-3-030-01168-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01168-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01167-3

  • Online ISBN: 978-3-030-01168-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics