Skip to main content

A Multidimensional Boundary Analogue of Hartogs’s Theorem on \(\mathbf n\)-Circular Domains for Integrable Functions

  • Conference paper
  • First Online:
  • 503 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 264))

Abstract

In the present paper we consider integrable functions given on the boundary of \(n\)-circular domain \(D\subset \mathbb C^n\), \(n>1\) and having one-dimensional property of holomorphic extension along the families of complex lines, passing through finite number of points of \(D.\) We prove the existence of holomorphic extension of such functions in \(D.\)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agranovskii, M.L., Val’skii, R.E.: Maxiniality of invariant algebras of functions. Sibirsk. Mat. Zh. 12(1), 3–12 (1971); English translation in Siberian Math. J. 12 (1971)

    Google Scholar 

  2. Agranovsky, M.L.: Propagation of boundary \(CR\)-foliations and Morera type theorems for manifolds with attached analytic discs. Adv. Math. 211, 284–326 (2007)

    Article  MathSciNet  Google Scholar 

  3. Agranovsky, M.L.: Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of \(\mathbb{C}^n\). J. d’Analyse Mathematique 113, 293–304 (2011)

    Article  MathSciNet  Google Scholar 

  4. Aizenberg, L.A.: Integral representations of functions holomorphic in n-circular domains (Continuation of Szego kernels). Mat. Sb. 65, 104–143 (1964)

    MathSciNet  Google Scholar 

  5. Aizenberg, L.A., Yuzhakov, A.P.: Integral Representations and Residues in Multidimensional Complex Analysis. American Mathematical Society, Providence (1983). (translated from the Russian)

    Book  Google Scholar 

  6. Aytuna, A., Sadullaev, A.: \(S^\ast \)-parabolic manifolds. TWMS J. Pure Appl. Math. 2, 6–9 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Baracco, L.: Holomorphic extension from the sphere to the ball. J. Math. Anal. Appl. 388, 760–762 (2012)

    Article  MathSciNet  Google Scholar 

  8. Baracco, L.: Separate holomorphic extension along lines and holomorphic extension from the sphere to the ball. Amer. J. Math. 135, 493–497 (2013)

    Article  MathSciNet  Google Scholar 

  9. Egorychev, G.P.: Integral Representation and the Computation of Combinatorial Sums, Nauka, Novosibirsk, 1977 (in Russian). English transl. Transl. Math. Monographs 59, Amer. Math. Soc., Providence. RI 1984; 2nd ed. (1989)

    Google Scholar 

  10. Globevnik, J.: Meromorphic extension from small families of circles and holomorphic textension from spheres Trans. Amer. Math. Soc. 364, 5867–5880 (2012)

    Article  Google Scholar 

  11. Globevnik, J.: Small families of complex lines for testing holomorphic extendibility. Amer. J. Math. 134, 1473–1490 (2012)

    Article  MathSciNet  Google Scholar 

  12. Globevnik, J., Stout, E.L.: Boundary Morera theorems for holomorphic functions of several complex variables. Duke Math. J. 64, 571–615 (1991)

    Article  MathSciNet  Google Scholar 

  13. Henkin, G.M.: The method of integral representations in complex analysis, Complex analysis-several variables 1, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 7, VINITI, Moscow, pp. 23–124 (1985)

    Google Scholar 

  14. Kytmanov, A.M.: The Bochner-Martinelli Integral and Its Applications. Birkhauser, Basel (1995)

    Book  Google Scholar 

  15. Kytmanov, A.M., Myslivets, S.G.: Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions. J. Math. Sci. 120, 1842–1867 (2004)

    Article  MathSciNet  Google Scholar 

  16. Kytmanov, A.M., Myslivets, G.: On families of complex lines sufficient for holomorphic extension. Math. Notes 83, 500–505 (2008)

    Article  MathSciNet  Google Scholar 

  17. Kytmanov, A.M., Myslivets, S.G., Kuzovatov, V.I.: Minimal dimension families of complex lines sufficient for holomorphic extension of functions. Siberian Math. J. 52, 256–266 (2011)

    Article  MathSciNet  Google Scholar 

  18. Kytmanov, A.M., Myslivets, S.G.: Holomorphic continuation of functions along finite families of complex lines in the ball. J. Sib. Fed. Univ. Math. Phys. 5(4), 547–557 (2012)

    Google Scholar 

  19. Kytmanov, A.M., Myslivets, S.G.: On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain. J. Sib. Fed. Univ. Math. Phys. 5(2), 213–222 (2012)

    Google Scholar 

  20. Kytmanov, A.M., Myslivets, S.G.: Holomorphic extension of continuous functions along finite families of complex lines in a ball. J. Sib. Fed. Univ. Math. Phys. 8(3), 291–302 (2015)

    Article  MathSciNet  Google Scholar 

  21. Kytmanov, A.M., Myslivets, S.G.: Holomorphic extension of functions along the finite families of complex lines in a ball of \(\mathbb{C}^n\). Math. Nahr 288(2–3), 224–234 (2015)

    Google Scholar 

  22. Otemuratov, B.P.: Functions of class \(L^p\) with the one-dimensional holomorphic extension property. Vestnik KrasGU 9, 95–100 (2006)

    Google Scholar 

  23. Otemuratov, B.P.: A multidimensional Morera’s theorem for integrable functions. Uzbek Math. J. 2, 112–119 (2009)

    MathSciNet  Google Scholar 

  24. Otemuratov, B.P.: Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions. J. Sib. Fed. Univ. Math. Phys. 5(1), 97–105 (2012)

    Google Scholar 

  25. Shabat, B.V.: Introduction to Complex Analysis, Part I, 2nd edn. Nauka, Moscow (1976). (in Russian)

    Google Scholar 

  26. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1975)

    MATH  Google Scholar 

  27. Stout, E.L.: The boundary values of holomorphic functions of several complex variables. Duke Math. J. 44(1), 105–108 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bairambay Otemuratov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Otemuratov, B. (2018). A Multidimensional Boundary Analogue of Hartogs’s Theorem on \(\mathbf n\)-Circular Domains for Integrable Functions. In: Ibragimov, Z., Levenberg, N., Rozikov, U., Sadullaev, A. (eds) Algebra, Complex Analysis, and Pluripotential Theory. USUZCAMP 2017. Springer Proceedings in Mathematics & Statistics, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-030-01144-4_10

Download citation

Publish with us

Policies and ethics