Skip to main content

A New Approach for Fault Diagnosis of Industrial Processes During Transitions

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2018)

Abstract

This paper presents a new approach for fault diagnosis of industrial processes during transitions. The proposed diagnosis strategy is based on the combination of the nearest-neighbor classification rule and the multivariate Dynamic Time Warping time series similarity measure. The proposal is compared with four different classification methods: Bayes Classifier, Multi-Layer Perceptron Neural Network, Support Vector Machines and Long Short-Term Memory Network which have high performance in the specialized scientific bibliography. The continuous stirred tank heater benchmark is used under scenarios of faults occurring at different moments of a transition and scarce fault data. The proposed approach achieves a classification performance approximately 20% superior compared to the best results of the four instance-based classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berndt, D., Clifford, J.: Using dynamic time warping to find patterns in time series. In: AAAI Workshop on Knowledge Discovery in Databases, pp. 229–248 (1994)

    Google Scholar 

  2. Chiang, L.H., Russell, E.L., Braatz, R.D.: Fault Detection and Diagnosis in Industrial Systems. Springer, London (2001). https://doi.org/10.1007/978-1-4471-0347-9

    Book  MATH  Google Scholar 

  3. Dougherty, G.: Pattern Recognition and Classification. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5323-9

    Book  MATH  Google Scholar 

  4. He, Y., Zhou, L., Ge, Z., Song, Z.: Distributed model projection based transition processes recognition and quality-related fault detection. Chemom. Intell. Lab. Syst. 159, 69–79 (2016)

    Article  Google Scholar 

  5. Heijden, F.V.D., Duin, R., Ridder, D.D., Tax, D.: Classification, Parameter Estimation and State Estimation. Wiley, Hoboken (2004)

    Book  Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short term memory networks. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Hsu, C., Lin, C.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  8. Mueen, A., Keogh, E.: Extracting optimal performance from dynamic time warping. In: KDD, pp. 2129–2130 (2016)

    Google Scholar 

  9. Scholkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  10. Song, B., Tan, S., Shi, H.: Key principal components with recursive local outlier factor for multimode chemical process monitoring. J. Process Control 47, 136–149 (2016)

    Article  Google Scholar 

  11. Srinivasan, R., Qian, M.S.: Online fault diagnosis and state identification during process transitions using dynamic locus analysis. Chem. Eng. Sci. 61, 6109–6132 (2006)

    Article  Google Scholar 

  12. Sundarraman, A., Srini, R.: Monitoring transitions in chemical plants using enhanced trend analysis. Comput. Chem. Eng. 27, 1455–1472 (2003)

    Article  Google Scholar 

  13. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Elsevier (2009)

    Google Scholar 

  14. Thornhill, N.F., Patwardhan, S.C., Shah, S.L.: A continuous stirred tank heater simulation model with applications. J. Process Control 18, 347–360 (2008)

    Article  Google Scholar 

  15. Wang, L., Yang, C., Sun, Y.: Multi-mode process monitoring approach based on moving window hidden Markov model. Ind. Eng. Chem. Res. 57(1), 292–301 (2017)

    Article  Google Scholar 

  16. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Discov. 26, 275–309 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Quiñones-Grueiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Acevedo-Galán, D.L., Quiñones-Grueiro, M., Prieto-Moreno, A., Llanes-Santiago, O. (2018). A New Approach for Fault Diagnosis of Industrial Processes During Transitions. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science(), vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01132-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01131-4

  • Online ISBN: 978-3-030-01132-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics