Skip to main content

Multiple Instance Learning Selecting Time-Frequency Features for Brain Computing Interfaces

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2018)

Abstract

Brain-Computer Interface is a technology which uses measures of brain activity to help people with motor disabilities. BCI applications based on Electroencephalography commonly rely on Motor Imagery paradigm. However, the estimation of motor brain patterns is affected by both variations in the signal properties over time (i.e. non-stationarity) and differences between frequency bands activations. Generally, Common Spatial Patterns is used as feature extraction. Nevertheless, its performance depends on the filter band selection and the time when the brain activity is associated with the task. A new method of time-frequency segmentation based on multi-instance learning is proposed. The spatial filters are built taking to account the obtained frequency-temporal segments where an instance selection based on Sparse Representation Classification method is developed together with a feature selection stage. The experiments are developed using a well-known dataset BCI competition IV dataset IIa that contains EEG records of nine subjects recorded from 22-electrodes mesh. The results evidencing that significant features appear at the end of MI interval and the found spatial patterns are consistent with MI neurophysiology. Furthermore, the proposed method outperforms the average classification accuracy of both CSP and SFTOFCRC for \(8.21\%\) and \(1.23\%\) respectively without deteriorating classification accuracy with statistical significance for subjects that present high accuracy with the compared methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.bbci.de/competition/iv/.

References

  1. Ahn, M., Jun, S.C.: Performance variation in motor imagery brain-computer interface: a brief review. J. Neurosci. Methods 243, 103–110 (2015)

    Article  Google Scholar 

  2. Alimardani, F., Boostani, R., Blankertz, B.: Weighted spatial based geometric scheme as an efficient algorithm for analyzing single-trial EEGS to improve cue-based BCI classification. Neural Netw. 92, 69–76 (2017). https://doi.org/10.1016/j.neunet.2017.02.014

    Article  Google Scholar 

  3. Allison, B.Z., Neuper, C.: Could anyone use a BCI? In: Tan, D., Nijholt, A. (eds.) Brain-computer Interfaces, pp. 35–54. Springer, London (2010). https://doi.org/10.1007/978-1-84996-272-8_3

    Chapter  Google Scholar 

  4. Álvarez-Meza, A.M., Cárdenas-Peña, D., Castellanos-Dominguez, G.: Unsupervised Kernel function building using maximization of information potential variability. In: Bayro-Corrochano, E., Hancock, E. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 335–342. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-12568-8_41

    Chapter  Google Scholar 

  5. Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Frontiers Neurosci. 6, 39 (2012)

    Article  Google Scholar 

  6. Balzi, A., Yger, F., Sugiyama, M.: Importance-weighted covariance estimation for robust common spatial pattern. Pattern Recognit. Lett. 68, 139–145 (2015)

    Article  Google Scholar 

  7. Bian, Y., Qi, H., Zhao, L., Ming, D., Guo, T., Fu, X.: Improvements in event-related desynchronization and classification performance of motor imagery using instructive dynamic guidance and complex tasks. Comput. Biol. Med. 96, 266–273 (2018). https://doi.org/10.1016/j.compbiomed.2018.03.018. http://www.sciencedirect.com/science/article/pii/S0010482518300751

    Article  Google Scholar 

  8. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008). https://doi.org/10.1109/MSP.2008.4408441

    Article  Google Scholar 

  9. Chen, Y., Bi, J., Wang, J.Z., Member, S.: MILES: multiple-instance learning via embedded instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1–17 (2006)

    Article  Google Scholar 

  10. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997). https://doi.org/10.1016/S0004-3702(96)00034-3. http://linkinghub.elsevier.com/retrieve/pii/S0004370296000343

    Article  MATH  Google Scholar 

  11. Fu, Z., Robles-Kelly, A., Zhou, J.: MILIS: multiple instance learning with instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 958–977 (2011). https://doi.org/10.1109/TPAMI.2010.155

    Article  Google Scholar 

  12. Hanakawa, T., Immisch, I., Toma, K., Dimyan, M.A., Van Gelderen, P., Hallett, M.: Functional properties of brain areas associated with motor execution and imagery. J. Neurophysiol. 89(2), 989–1002 (2003)

    Article  Google Scholar 

  13. Li, W.J., Yeung, D.Y.: MILD: multiple-instance learning via disambiguation. IEEE Trans. Knowl. Data Eng. 22(1), 76–89 (2010). https://doi.org/10.1109/TKDE.2009.58

    Article  Google Scholar 

  14. Miao, M., Wang, A., Liu, F.: A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition. Med. Biol. Eng. Comput. 55(9), 1589–1603 (2017). https://doi.org/10.1007/s11517-017-1622-1

    Article  Google Scholar 

  15. Saiote, C., et al.: Resting-state functional connectivity and motor imagery brain activation. Hum. Brain Mapp. 37(11), 3847–3857 (2016)

    Article  Google Scholar 

  16. Shin, Y., Lee, S., Lee, J., Lee, H.N.: Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems. J. Neural Eng. 9(5), 056002 (2012). https://doi.org/10.1088/1741-2560/9/5/056002

    Article  Google Scholar 

  17. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009). https://doi.org/10.1109/TPAMI.2008.79. http://www.ncbi.nlm.nih.gov/pubmed/21646680

    Article  Google Scholar 

  18. Zhang, H., Chin, Z.Y., Ang, K.K., Guan, C., Wang, C.: Optimum spatio-spectral filtering network for brain-computer interface. IEEE Trans. Neural Netw. 22(1), 52–63 (2011)

    Article  Google Scholar 

  19. Zhang, Y., Zhou, G., Jin, J., Wang, X., Cichocki, A.: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface. J. Neurosci. Methods 255, 85–91 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is developed within the framework of the research project 111077757982, funded by COLCIENCIAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Caicedo-Acosta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caicedo-Acosta, J., Velasquez-Martinez, L., Cárdenas-Peña, D., Castellanos-Dominguez, G. (2018). Multiple Instance Learning Selecting Time-Frequency Features for Brain Computing Interfaces. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science(), vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01132-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01131-4

  • Online ISBN: 978-3-030-01132-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics