Geometric Flow Equations

Part of the Tutorials, Schools, and Workshops in the Mathematical Sciences book series (TSWMS)


In this minicourse, we study hypersurfaces that solve geometric evolution equations. More precisely, we investigate hypersurfaces that evolve with a normal velocity depending on a curvature function like the mean curvature or Gauß curvature. In three lectures, we address
  • hypersurfaces, principal curvatures and evolution equations for geometric quantities like the metric and the second fundamental form.

  • the convergence of convex hypersurfaces to round points. Here, we will also show some computer algebra calculations.

  • the evolution of graphical hypersurfaces under mean curvature flow.


  1. 1.
    B. Andrews, Contraction of convex hypersurfaces in Euclidean space. Calc. Var. Partial Differ. Equ. 2(2), 151–171 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    B. Andrews, Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138(1), 151–161 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    B. Andrews, P. Guan, L. Ni, Flow by powers of the Gauss curvature. Adv. Math. 299, 174–201 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Brendle, K. Choi, P. Daskalopoulos, Asymptotic behavior of flows by powers of the Gaussian curvature. Acta Math. 219, 1–16 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Y.G. Chen, Y. Giga, S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749–786 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    B. Chow, Deforming convex hypersurfaces by the nth root of the Gaussian curvature. J. Differ. Geom. 22(1), 117–138 (1985)CrossRefGoogle Scholar
  7. 7.
    J. Clutterbuck, Parabolic equations with continuous initial data (2004). arXiv:math.AP/0504455Google Scholar
  8. 8.
    J. Clutterbuck, O.C. Schnürer, F. Schulze, Stability of translating solutions to mean curvature flow. Calc. Var. Partial Differ. Equ. 29(3), 281–293 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    T.H. Colding, W.P. Minicozzi II, Sharp estimates for mean curvature flow of graphs. J. Reine Angew. Math. 574, 187–195 (2004)MathSciNetzbMATHGoogle Scholar
  10. 10.
    K. Ecker, Regularity Theory for Mean Curvature Flow. Progress in Nonlinear Differential Equations and Their Applications, vol. 57 (Birkhäuser Boston Inc., Boston, 2004)CrossRefGoogle Scholar
  11. 11.
    K. Ecker, G. Huisken, Interior estimates for hypersurfaces moving by mean curvature. Invent. Math. 105(3), 547–569 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    L.C. Evans, J. Spruck, Motion of level sets by mean curvature. I. J. Differ. Geom. 33(3), 635–681 (1991)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M.E. Feighn, Separation properties of codimension-1 immersions. Topology 27(3), 319–321 (1988)MathSciNetCrossRefGoogle Scholar
  14. 14.
    W.J. Firey, Shapes of worn stones. Mathematika 21, 1–11 (1974)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Gage, R.S. Hamilton, The heat equation shrinking convex plane curves. J. Differ. Geom. 23(1), 69–96 (1986)MathSciNetCrossRefGoogle Scholar
  16. 16.
    C. Gerhardt, Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32(1), 299–314 (1990)MathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Gerhardt, Curvature Problems. Series in Geometry and Topology, vol. 39 (International Press, Somerville, 2006)Google Scholar
  18. 18.
    M.A. Grayson, The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26(2), 285–314 (1987)MathSciNetCrossRefGoogle Scholar
  19. 19.
    R.S. Hamilton, Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)MathSciNetCrossRefGoogle Scholar
  20. 20.
    G. Huisken, Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)MathSciNetCrossRefGoogle Scholar
  21. 21.
    G. Huisken, T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    G. Huisken, A. Polden, Geometric evolution equations for hypersurfaces, in Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Lecture Notes in Mathematics, vol. 1713 (Springer, Berlin, 1999), pp. 45–84Google Scholar
  23. 23.
    J.A. McCoy, The surface area preserving mean curvature flow. Asian J. Math. 7(1), 7–30 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations (Springer, New York, 1984). Corrected reprint of the 1967 originalCrossRefGoogle Scholar
  25. 25.
    M. Sáez Trumper, O.C. Schnürer, Mean curvature flow without singularities. J. Differ. Geom. 97(3), 545–570 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    O.C. Schnürer, The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds. Math. Z. 242(1), 159–181 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    O.C. Schnürer, Surfaces contracting with speed |A|2. J. Differ. Geom. 71(3), 347–363 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    O.C. Schnürer, Surfaces expanding by the inverse Gauß curvature flow. J. Reine Angew. Math. 600, 117–134 (2006)MathSciNetzbMATHGoogle Scholar
  29. 29.
    N. Stavrou, Selfsimilar solutions to the mean curvature flow. J. Reine Angew. Math. 499, 189–198 (1998)MathSciNetzbMATHGoogle Scholar
  30. 30.
    C. Sturm, Mémoire sur la résolution des équations numeriques. Bull. Sci. Math. Ferussac 11, 419–422 (1829)Google Scholar
  31. 31.
    K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature. Commun. Pure Appl. Math. 38(6), 867–882 (1985)MathSciNetCrossRefGoogle Scholar
  32. 32.
    J.I.E. Urbas, An expansion of convex hypersurfaces. J. Differ. Geom. 33(1), 91–125 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Fachbereich Mathematik und StatistikUniversität KonstanzKonstanzGermany

Personalised recommendations