Effect of Homogeneous-Heterogeneous Reactions in MHD Stagnation Point Nanofluid Flow Toward a Cylinder with Nonuniform Heat Source or Sink

  • T. Sravan Kumar
  • B. Rushi KumarEmail author
Conference paper
Part of the Trends in Mathematics book series (TM)


The study investigates the effect of homogeneous-heterogeneous reactions in the stagnation point nanofluid flow toward a cylinder. In the presence of uniform magnetic field, thermal radiation, and non uniform heat source or sink. As per the geometry of the flow configuration, the conservation laws are transformed into a nonlinear model. Using the appropriate analogue transformations, the resultant equations are employing RK-4th order approach along with shooting technique to derive closed-form solutions for momentum, angular velocity, temperature, and concentration fields as well as skin friction, local Nusselt number, and Sherwood number. It is observed that heat generation parameter leads to enhance the temperature distribution. The concentration boundary layer thickness decreases for larger homogeneous reaction rate parameter.


MHD stagnation point homogeneous-heterogeneous reactions nanofluid flow non-uniform heat source/sink 


  1. 1.
    Pop, I., Ingham, D.B.: Convective heat transfer. Mathematical and computational modeling of viscous fluids and porous media pergamon. Oxford. (2001)Google Scholar
  2. 2.
    Chaudhary, M. A., and Merkin, J. H.: A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow-I: Equal diffusivities. Fluid Dyn. Res. 16(6), 311–333 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Vafai, K.: Porous media: Applications in biological systems and biotechnology. CRC Press (2010)Google Scholar
  4. 4.
    Choi, S.U.S.: Enhancing thermal conductivity of fuids with nanoparticles developments and applications of non-Newtonian flows. ASME FED 231/MD. 6, 699–105 (1995)Google Scholar
  5. 5.
    Choi, S.U.S., Zhang, Z.G., Yu. W., Lockwood. F.E., Grulke. E.A.: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Letts. 79(14), 2252–2254 (2001)CrossRefGoogle Scholar
  6. 6.
    Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Trans. 12, 567–574 (2003)CrossRefGoogle Scholar
  7. 7.
    Lawrence, J.C., Flow past a stretching plate. ZAMM. 21(4), 645–647 (1970)MathSciNetGoogle Scholar
  8. 8.
    Eastman, J.A., Choi, S.U., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofuids containing copper nanoparticles. Appl. Phys. Letts. 178, 718–720 (2001)CrossRefGoogle Scholar
  9. 9.
    Makinde, O.D., Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50(7), 1326–1332 (2011)CrossRefGoogle Scholar
  10. 10.
    Khan, W.A., Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. IJHMT. 53, 2477–2483 (2010)CrossRefGoogle Scholar
  11. 11.
    Nadeem, S., Haq, R.U.: Effect of Thermal radiation for magneto-hydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J. Comput. Theor. Nanosci. 11(1), 32–40 (2014)CrossRefGoogle Scholar
  12. 12.
    Nadeem, S., Haq, R.U., Khan, Z.H.: Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. J. Taiwan Inst. Chem. Eng.. 45(1), 121–126 (2014)CrossRefGoogle Scholar
  13. 13.
    Sheikholeslami, M., Bandpy, M.G., Ellahi, R., Zeeshan, A.: Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces. J. Magne. Magne. Mater.. 369, 69–80 (2014)CrossRefGoogle Scholar
  14. 14.
    Ellahi, R.: The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl. Mathem. Model. 37, 1451–1467 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ali, F.Md., Nazar, R., Arifin, N.Md., Pop, I.: MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field. Heat Mass Trans.. 47(2), 155–162 (2010)CrossRefGoogle Scholar
  16. 16.
    Zeeshan, A., Ellahi, R., Siddiqui, A.M., Rahman, H.U.: An investigation of porosity and magneto-hydrodynamic flow of non-Newtonian nanofluid in coaxial cylinders. Int. J. Phys. Sci. 7(9), 1353–1361 (2012)CrossRefGoogle Scholar
  17. 17.
    Nadeem, S., Lee, C.: Boundary layer flow of nanofluid over an exponentially stretching surface. Nanosc. Res. Letts. 7(1), 94 (2012)CrossRefGoogle Scholar
  18. 18.
    Noghrehabadi, A., Pourrajab, R., Ghalambaz, M.: Flow and heat transfer of nanofluids over stretching sheet taking into account partial slip and thermal convective boundary conditions. Heat Mass Trans. 49(9), 1357–1366 (2013)CrossRefGoogle Scholar
  19. 19.
    Mabood, F., Khan, W. A., Ismail, A.I.M.: MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: a numerical study. J. Magne. Magne. Mater. 374, 569–576 (2015)CrossRefGoogle Scholar
  20. 20.
    Merkin, J. H.: A Model for Isothermal Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow. Math. Comput. Model. 24(8), 125–136 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsVITVelloreIndia
  2. 2.Department of Mathematics, School of Advanced SciencesVellore Institute of TechnologyVelloreIndia

Personalised recommendations