Skip to main content

iStim. A New Portable Device for Interoceptive Stimulation

  • Conference paper
  • First Online:
Pervasive Computing Paradigms for Mental Health (MindCare 2018)

Abstract

The sense of the physiological condition of the entire organism (i.e. interoception) represents a fundamental perception that serves a correct and balanced functioning of the human body. Interoceptive information constitutes a core element in a variety of psycho-physiological systems and processes; therefore the possibility to consistently stimulate the interoceptive system with specifically targeted inputs has a fundamental value both in assessing and clinical settings. The article illustrates a new technological portable device able to delivered precise interoceptive parasympathetic stimuli to C-T afferents connected to the lamina I spinothalamocortical system. Interoceptive stimuli can be programmed in a variety of parameters, ranging from continuous stimulation to modulation of frequency and variance. Implications and possible applications are discussed in both assessing protocols and clinical treatments as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Craig, A.D.: Interoception: the sense of the physiological condition of the body. Curr. Opin. Neurobiol. 13(4), 500–505 (2003)

    Article  Google Scholar 

  2. Cervero, F., Janig, W.: Visceral nociceptors: a new world order? Trends Neurosci. 15(10), 374–378 (1992)

    Article  Google Scholar 

  3. Mense, S., Meyer, H.: Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol. 363, 403–417 (1985)

    Article  Google Scholar 

  4. Wilson, L.B., Andrew, D., Craig, A.D.: Activation of spinobulbar lamina I neurons by static muscle contraction. J. Neurophysiol. 87(3), 1641–1645 (2002)

    Article  Google Scholar 

  5. Craig, A.D.: How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3(8), 655–666 (2002)

    Article  Google Scholar 

  6. Iggo, A.: Cutaneous mechanoreceptors with afferent C fibres. J Physiol. 152, 337–353 (1960)

    Article  Google Scholar 

  7. Gordon, I., et al.: Brain mechanisms for processing affective touch. Hum. Brain Mapp. 34(4), 914–922 (2013)

    Article  Google Scholar 

  8. Craig, A.D.: Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 364(1525), 1933–1942 (2009)

    Article  Google Scholar 

  9. Di Lernia, D., Serino, S., Riva, G.: Pain in the body. Altered interoception in chronic pain conditions: a systematic review. Neurosci. Biobehav. Rev. 71, 328–341 (2016)

    Article  Google Scholar 

  10. Gaudio, S., et al.: Altered resting state functional connectivity of anterior cingulate cortex in drug naive adolescents at the earliest stages of Anorexia Nervosa. Sci. Rep. 5, 10818 (2015)

    Article  Google Scholar 

  11. Gaudio, S., et al.: White matter abnormalities in treatment-naive adolescents at the earliest stages of Anorexia Nervosa: a diffusion tensor imaging study. Psychiatry Res. 266, 138–145 (2017)

    Article  Google Scholar 

  12. Kerr, K.L., et al.: Altered insula activity during visceral interoception in weight-restored patients with Anorexia Nervosa. Neuropsychopharmacology 41(2), 521–528 (2016)

    Article  Google Scholar 

  13. Wierenga, C.E., et al.: Hunger does not motivate reward in women remitted from Anorexia Nervosa. Biol Psychiatry 77(7), 642–652 (2015)

    Article  Google Scholar 

  14. Dunn, B.D., et al.: Can you feel the beat? Interoceptive awareness is an interactive function of anxiety- and depression-specific symptom dimensions. Behav Res Ther. 48(11), 1133–1138 (2010)

    Article  Google Scholar 

  15. Pollatos, O., Traut-Mattausch, E., Schandry, R.: Differential effects of anxiety and depression on interoceptive accuracy. Depress Anxiety 26(2), 167–173 (2009)

    Article  Google Scholar 

  16. Sliz, D., Hayley, S.: Major depressive disorder and alterations in insular cortical activity: a review of current functional magnetic imaging research. Front Hum. Neurosci. 6, 323 (2012)

    Article  Google Scholar 

  17. Sprengelmeyer, R., et al.: The insular cortex and the neuroanatomy of major depression. J. Affect. Disord. 133(1–2), 120–127 (2011)

    Article  Google Scholar 

  18. Stephan, K.E., et al.: Allostatic self-efficacy: a metacognitive theory of Dyshomeostasis-induced fatigue and depression. Front. Hum. Neurosci. 10, 550 (2016)

    Article  Google Scholar 

  19. Stratmann, M., et al.: Insular and hippocampal gray matter volume reductions in patients with major depressive disorder. PLoS One 9(7), e102692 (2014)

    Article  Google Scholar 

  20. Wiebking, C., et al.: Interoception in insula subregions as a possible state marker for depression-an exploratory fMRI study investigating healthy, depressed and remitted participants. Front. Behav. Neurosci. 9, 82 (2015)

    Article  Google Scholar 

  21. Naqvi, N.H., Bechara, A.: The hidden island of addiction: the insula. Trends Neurosci. 32(1), 56–67 (2009)

    Article  Google Scholar 

  22. Verdejo-Garcia, A., Clark, L., Dunn, B.D.: The role of interoception in addiction: a critical review. Neurosci. Biobehav. Rev. 36(8), 1857–1869 (2012)

    Article  Google Scholar 

  23. Hughes, K.C., Shin, L.M.: Functional neuroimaging studies of post-traumatic stress disorder. Expert Rev. Neurother. 11(2), 275–285 (2011)

    Article  Google Scholar 

  24. Chen, M.C., et al.: Increased insula coactivation with salience networks in insomnia. Biol. Psychol. 97, 1–8 (2014)

    Article  Google Scholar 

  25. Chatterjee, S.S., Mitra, S.: “I Do Not Exist”—Cotard syndrome in insular cortex atrophy. Biol. Psychiat. 77(11), e52–e53 (2015)

    Article  Google Scholar 

  26. Gorka, S.M., et al.: Insula response to unpredictable and predictable aversiveness in individuals with panic disorder and comorbid depression. Biol. Mood Anxiety Disord. 4, 9 (2014)

    Article  Google Scholar 

  27. Segerdahl, A.R., et al.: The dorsal posterior insula subserves a fundamental role in human pain. Nat. Neurosci. 18(4), 499–500 (2015)

    Article  Google Scholar 

  28. Starr, C.J., et al.: Roles of the insular cortex in the modulation of pain: insights from brain lesions. J. Neurosci. 29(9), 2684–2694 (2009)

    Article  Google Scholar 

  29. Olausson, H., Wessberg, J., Morrison, I., McGlone, F. (eds.): Affective Touch and the Neurophysiology of CT Afferents. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-6418-5

    Book  Google Scholar 

  30. Olausson, H., et al.: Unmyelinated tactile afferents signal touch and project to insular cortex. Nat. Neurosci. 5(9), 900–904 (2002)

    Article  Google Scholar 

  31. Crucianelli, L., et al.: Bodily pleasure matters: velocity of touch modulates body ownership during the rubber hand illusion. Front Psychol. 4, 703 (2013)

    Article  Google Scholar 

  32. Crucianelli, L., et al.: The perception of affective touch in Anorexia Nervosa. Psychiatry Res. 239, 72–78 (2016)

    Article  Google Scholar 

  33. Ackerley, R., et al.: Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. J. Neurosci. 34(8), 2879–2883 (2014)

    Article  Google Scholar 

  34. Ogden, R.S., et al.: The effect of pain and the anticipation of pain on temporal perception: a role for attention and arousal. Cogn. Emot. 29(5), 910–922 (2015)

    Article  Google Scholar 

  35. Ogden, R.S., et al.: Stroke me for longer this touch feels too short: the effect of pleasant touch on temporal perception. Conscious Cogn. 36, 306–313 (2015)

    Article  Google Scholar 

  36. Vallbo, A.B., Olausson, H., Wessberg, J.: Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J. Neurophysiol. 81(6), 2753–2763 (1999)

    Article  Google Scholar 

  37. Ackerley, R., et al.: Touch perceptions across skin sites: differences between sensitivity, direction discrimination and pleasantness. Front Behav. Neurosci. 8, 54 (2014)

    Google Scholar 

  38. McGlone, F., Wessberg, J., Olausson, H.: Discriminative and affective touch: sensing and feeling. Neuron 82(4), 737–755 (2014)

    Article  Google Scholar 

  39. Wessberg, J., et al.: Receptive field properties of unmyelinated tactile afferents in the human skin. J. Neurophysiol. 89(3), 1567–1575 (2003)

    Article  Google Scholar 

  40. Vallbo, A.B., et al.: Receptive field characteristics of tactile units with myelinated afferents in hairy skin of human subjects. J. Physiol. 483(Pt 3), 783–795 (1995)

    Article  Google Scholar 

  41. Macefield, V.G.: Tactile C fibers. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds.) Encyclopedia of Neuroscience. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-29678-2

    Chapter  Google Scholar 

  42. Nordin, M.: Low-threshold mechanoreceptive and nociceptive units with unmyelinated (C) fibres in the human supraorbital nerve. J. Physiol. 426, 229–240 (1990)

    Article  Google Scholar 

  43. Liljencrantz, J., Olausson, H.: Tactile C fibers and their contributions to pleasant sensations and to tactile allodynia. Front Behav. Neurosci. 8, 37 (2014)

    Article  Google Scholar 

  44. Di Lernia, D., et al.: Feel the time. Time perception as a function of interoceptive processing. Front. Hum. Neurosci. 12, 74 (2018)

    Article  Google Scholar 

  45. Habig, K., et al.: Low threshold unmyelinated mechanoafferents can modulate pain. BMC Neurol. 17(1), 184 (2017)

    Article  Google Scholar 

  46. Serino, S., et al.: The role of age on multisensory bodily experience: an experimental study with a virtual reality full-body illusion. Cyberpsychol. Behav. Soc. Netw. 21(5), 304–310 (2018)

    Article  Google Scholar 

  47. Zanier, E.R., et al.: Virtual reality for traumatic brain injury. Front. Neurol. 9, 345 (2018)

    Article  Google Scholar 

  48. O’Reilly, J.X., et al.: Dissociable effects of surprise and model update in parietal and anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 110(38), E3660–E3669 (2013)

    Article  Google Scholar 

  49. Rosso, I.M., et al.: Insula and anterior cingulate GABA levels in posttraumatic stress disorder: preliminary findings using magnetic resonance spectroscopy. Depress. Anxiety 31(2), 115–123 (2014)

    Article  Google Scholar 

  50. Di Lernia, D., et al.: Ghosts in the machine interoceptive modeling for chronic pain treatment. Front. Neurosci. 10, 314 (2016)

    Article  Google Scholar 

  51. Riva, G., et al.: Embodied medicine: mens sana in corpore virtuale sano. Front. Hum. Neurosci. 11, 120 (2017)

    Article  Google Scholar 

  52. Riva, G., et al.: Positive and transformative technologies for active ageing. Stud. Health Technol. Inform. 220, 308–315 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, D.D.L.; Writing – Original Draft, D.D.L; Writing – Review & Editing, G.R., and P.C.; Hardware and software development: D.D.L.; Supervision G.R., and P.C.

Corresponding author

Correspondence to Daniele Di Lernia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Lernia, D., Riva, G., Cipresso, P. (2018). iStim. A New Portable Device for Interoceptive Stimulation. In: Cipresso, P., Serino, S., Ostrovsky, Y., Baker, J. (eds) Pervasive Computing Paradigms for Mental Health. MindCare 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 253. Springer, Cham. https://doi.org/10.1007/978-3-030-01093-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01093-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01092-8

  • Online ISBN: 978-3-030-01093-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics