A Formally Verified Motion Planner for Autonomous Vehicles

  • Albert RizaldiEmail author
  • Fabian Immler
  • Bastian Schürmann
  • Matthias Althoff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11138)


Autonomous vehicles are safety-critical cyber-physical systems. To ensure their correctness, we use a proof assistant to prove safety properties deductively. This paper presents a formally verified motion planner based on manoeuvre automata in Isabelle/HOL. Two general properties which we ensure are numerical soundness (the absence of floating-point errors) and logical correctness (satisfying a plan specified in linear temporal logic). From these two properties, we obtain a motion planner whose correctness only depends on the validity of the models of the ego vehicle and its environment.


Motion primitives Manoeuvre automata Motion planning Theorem proving Linear temporal logic Reachability analysis Autonomous vehicles 


  1. 1.
    Althoff, M.: An introduction to CORA 2015. In: Proceedings of the Workshop on Applied Verification for Continuous and Hybrid Systems (2015)Google Scholar
  2. 2.
    Althoff, M., Grebenyuk, D.: Implementation of interval arithmetic in CORA 2016. In: Proceedings of the 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems, pp. 91–105 (2016)Google Scholar
  3. 3.
    Althoff, M., Koschi, M., Manzinger, S.: CommonRoad: composable benchmarks for motion planning on roads. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 719–726 (2017)Google Scholar
  4. 4.
    Anand, A., Knepper, R.A.: ROSCoq: robots powered by constructive reals. In: Proceedings of the 6th International Conference on Interactive Theorem Proving, pp. 34–50 (2015)Google Scholar
  5. 5.
    Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., Pappas, G.J.: Symbolic planning and control of robot motion [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 61–70 (2007)CrossRefGoogle Scholar
  6. 6.
    Belta, C., Isler, V., Pappas, G.J.: Discrete abstractions for robot motion planning and control in polygonal environments. IEEE Trans. Robot. 21(5), 864–874 (2005)CrossRefGoogle Scholar
  7. 7.
    Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 4(4), 361–369 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bohrer, B., Tan, Y.K., Mitsch, S., Myreen, M., Platzer, A.: Veriphy: Verified controller executables from verified cyber-physical system models. In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (2018).
  9. 9.
    Boldo, S., Melquiond, G.: Flocq: a unified library for proving floating-point algorithms in Coq. In: Proceedings of the IEEE Computer Arithmetic Symposium, pp. 243–252 (2011)Google Scholar
  10. 10.
    Egerstedt, M.B., Brockett, R.W.: Feedback can reduce the specification complexity of motor programs. IEEE Trans. Autom. Control 48(2), 213–223 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2020–2025 (2005)Google Scholar
  12. 12.
    Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for dynamic robots. Automatica 45(2), 343–352 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    de Figueiredo, L., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithms 37(1–4), 147–158 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Trans. Robot. 21(6), 1077–1091 (2005)CrossRefGoogle Scholar
  15. 15.
    Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham (2015). Scholar
  16. 16.
    Gavrilets, V., Mettler, B., Feron, E.: Human-inspired control logic for automated maneuvering of miniature helicopter. J. Guidance Control Dyn. 27(5), 752–759 (2004)CrossRefGoogle Scholar
  17. 17.
    Guibas, L.J., Nguyen, A., Zhang, L.: Zonotopes as bounding volumes. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 803–812 (2003)Google Scholar
  18. 18.
    Harrison, J.: Floating-point verification using theorem proving. In: Proceedings of the 6th International Conference on Formal Methods for the Design of Computer, Communication, and Software Systems, pp. 211–242 (2006)CrossRefGoogle Scholar
  19. 19.
    Hölzl, J.: Proving inequalities over reals with computation in Isabelle/HOL. In: Proceedings of the ACM International Workshop on Programming Languages for Mechanized Mathematics Systems, pp. 38–45 (2009)Google Scholar
  20. 20.
    Immler, F.: Formally verified computation of enclosures of solutions of ordinary differential equations. In: Proceedings of the 6th International Symposium of NASA Formal Methods, pp. 113–127 (2014)Google Scholar
  21. 21.
    Immler, F.: A verified algorithm for geometric zonotope/hyperplane intersection. In: Proceedings of International Conference on Certified Programs and Proofs, pp. 129–136 (2015)Google Scholar
  22. 22.
    Immler, F.: Verified reachability analysis of continuous systems. In: Proceedings of the 21st International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 37–51 (2015)Google Scholar
  23. 23.
    Krauss, A.: Automating recursive definitions and termination proofs in higher-order logic, Ph.D. thesis, Technical University Munich (2009)Google Scholar
  24. 24.
    Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implementation of ML. In: Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 179–191 (2014)Google Scholar
  25. 25.
    Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of obstacle avoidance and navigation of ground robots. Int. J. Robot. Res. 36(12), 1312–1340 (2017)CrossRefGoogle Scholar
  26. 26.
    Moore, J.S., Lynch, T., Kaufmann, M.: A mechanically checked proof of the correctness of the kernel of the AMD5K86 floating-point division algorithm. IEEE Trans. Comput. 47(9), 913–926 (1996)CrossRefGoogle Scholar
  27. 27.
    Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)CrossRefGoogle Scholar
  28. 28.
    Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002). Scholar
  29. 29.
    Obua, S.: Flyspeck II: The Basic Linear Programs, Ph.D. thesis, Technische Universität München, München (2008)Google Scholar
  30. 30.
    Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL safety properties in hybrid systems. Int. J. Softw. Tools Technol. Transf. 15(4), 305–320 (2013)CrossRefGoogle Scholar
  31. 31.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Automa. Reason. 41(2), 143–189 (2008)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Rizaldi, A., Keinholz, J., Huber, M., Feldle, J., Immler, F., Althoff, M., Hilgendorf, E., Nipkow, T.: Formalising traffic rules for autonomous vehicles involving multiple lanes in Isabelle/HOL. In: Proceedings of the 13th International Conference on integrated Formal Methods, pp. 50–66 (2017)Google Scholar
  33. 33.
    Roehm, H., Oehlerking, J., Heinz, T., Althoff, M.: STL model checking of continuous and hybrid systems. In: Proceedings of 14th International Symposium on Automated Technology for Verification and Analysis, pp. 412–427 (2016)CrossRefGoogle Scholar
  34. 34.
    Rump, S.M., Kashiwagi, M.: Implementation and improvements of affine arithmetic. Nonlinear Theory Appl. IEICE 6(3), 341–359 (2015)CrossRefGoogle Scholar
  35. 35.
    Schürmann, B., Althoff, M.: Convex interpolation control with formal guarantees for disturbed and constrained nonlinear systems. In: Proceedings of the Hybrid Systems: Computation and Control, pp. 121–130 (2017)Google Scholar
  36. 36.
    Schürmann, B., Heß, D., Eilbrecht, J., Stursberg, O., Köster, F., Althoff, M.: Ensuring drivability of planned motions using formal methods. In: Proceedings of the Intelligent Transportation Systems Conference, pp. 1661–1668 (2017)Google Scholar
  37. 37.
    Yu, L.: A formal model of IEEE floating point arithmetic. Arch. Form. Proofs (2018). ISSN: 2150-914x

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Albert Rizaldi
    • 1
    Email author
  • Fabian Immler
    • 2
  • Bastian Schürmann
    • 1
  • Matthias Althoff
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMunichGermany
  2. 2.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations