Skip to main content

Signal Convolution Logic

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11138))

Abstract

We introduce a new logic called Signal Convolution Logic (\(\text {SCL}\)) that combines temporal logic with convolutional filters from digital signal processing. \(\text {SCL}\) enables to reason about the percentage of time a formula is satisfied in a bounded interval. We demonstrate that this new logic is a suitable formalism to effectively express non-functional requirements in Cyber-Physical Systems displaying noisy and irregular behaviours. We define both a qualitative and quantitative semantics for it, providing an efficient monitoring procedure. Finally, we prove \(\text {SCL}\) at work to monitor the artificial pancreas controllers that are employed to automate the delivery of insulin for patients with type-1 diabetes.

E.B. and L.N. acknowledge the partial support of the Austrian National Research Network S 11405-N23 (RiSE/SHiNE) of the Austrian Science Fund (FWF). E.B., L.N. and S.S. acknowledge the partial support of the ICT COST Action IC1402 (ARVI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This operation is in fact a cross-correlation, but here we use the same convention of the deep learning community and call it convolution.

  2. 2.

    \(\mathcal {N}(\mu ,\sigma ^2)\) is the Gaussian distribution with mean \(\mu \) and variance \(\sigma ^2\).

References

  1. Akazaki, Takumi, Hasuo, Ichiro: Time robustness in MTL and expressivity in hybrid system falsification. In: Kroening, Daniel, Păsăreanu, Corina S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_21

    Chapter  Google Scholar 

  2. Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular design of synthetic biological circuits. In: Proceedings of CMSB, pp. 164–177. Springer, Berlin (2013)

    Chapter  Google Scholar 

  3. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bartocci, Ezio, Deshmukh, Jyotirmoy, Donzé, Alexandre, Fainekos, Georgios, Maler, Oded, Ničković, Dejan, Sankaranarayanan, Sriram: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications. In: Bartocci, Ezio, Falcone, Yliès (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_5

    Chapter  Google Scholar 

  5. Cameron, Fraser, Fainekos, Georgios, Maahs, David M., Sankaranarayanan, Sriram: Towards a verified artificial pancreas: challenges and solutions for runtime verification. In: Bartocci, Ezio, Majumdar, Rupak (eds.) RV 2015. LNCS, vol. 9333, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3_1

    Chapter  Google Scholar 

  6. Donzé, Alexandre: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, Tayssir, Cook, Byron, Jackson, Paul (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_17

    Chapter  Google Scholar 

  7. Donzé, Alexandre, Maler, Oded: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, Krishnendu, Henzinger, Thomas A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9

    Chapter  MATH  Google Scholar 

  8. Fainekos, G.E., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of automotive control applications using S-TaLiRo. In: Proceedings of ACC. IEEE (2012)

    Google Scholar 

  9. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

    Article  MathSciNet  Google Scholar 

  10. Hovorka, R., Canonico, V., Chassin, L.J., Haueter, U., Massi-Benedetti, M., Federici, M.O., Pieber, T.R., Schaller, H.C., Schaupp, L., Vering, T.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25(4), 905 (2004)

    Article  Google Scholar 

  11. Jha, S., Raman, V., Sadigh, D., Seshia, S.A.: Safe autonomy under perception uncertainty using chance-constrained temporal logic. J. Autom. Reason. 60(1), 43–62 (2018)

    Article  MathSciNet  Google Scholar 

  12. Li, J., Nuzzo, P., Sangiovanni-Vincentelli, A., Xi, Y., Li, D.: Stochastic contracts for cyber-physical system design under probabilistic requirements. In: Proceedings of MEMOCODE, pp. 5–14. ACM (2017)

    Google Scholar 

  13. Maler, Oded, Nickovic, Dejan: Monitoring temporal properties of continuous signals. In: Lakhnech, Yassine, Yovine, Sergio (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  14. Rodionova, A., Bartocci, E., Ničković, D., Grosu, R.: Temporal logic as filtering. In: Proceedings of HSCC 2016, pp. 11–20. ACM (2016)

    Google Scholar 

  15. Sadigh, D., Kapoor, A.: Safe control under uncertainty with probabilistic signal temporal logic. In: Robotics: Science and Systems XII, University of Michigan, Ann Arbor, Michigan, USA, June 18 - June 22, 2016 (2016)

    Google Scholar 

  16. Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid systems using the cross-entropy method. In: Proc. of HSCC. pp. 125–134 (2012)

    Google Scholar 

  17. Sankaranarayanan, S., Kumar, S.A., Cameron, F., Bequette, B.W., Fainekos, G., Maahs, D.M.: Model-based falsification of an artificial pancreas control system. SIGBED Rev. 14(2), 24–33 (2017). Mar

    Article  Google Scholar 

  18. Shmarov, F., Paoletti, N., Bartocci, E., Lin, S., Smolka, S.A., Zuliani, P.: SMT-based synthesis of safe and robust PID controllers for stochastic hybrid systems. In: Proceedings of HVC, pp. 131–146 (2017)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Silvetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silvetti, S., Nenzi, L., Bartocci, E., Bortolussi, L. (2018). Signal Convolution Logic. In: Lahiri, S., Wang, C. (eds) Automated Technology for Verification and Analysis. ATVA 2018. Lecture Notes in Computer Science(), vol 11138. Springer, Cham. https://doi.org/10.1007/978-3-030-01090-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01090-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01089-8

  • Online ISBN: 978-3-030-01090-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics