Skip to main content

A Domains Oriented Framework of Recent Machine Learning Applications in Mobile Mental Health

  • Conference paper
  • First Online:
  • 1562 Accesses

Part of the book series: Lecture Notes in Information Systems and Organisation ((LNISO,volume 29))

Abstract

This research illustrates how the interdisciplinary integration of mobile health (mHealth) and Machine Learning (ML) can contribute to implementing mobile care for mental health. 94 articles were identified in a literature review to derive functional domains and composing information items improving the comprehension of ML benefits with mHealth integration. Identified items of each domain were pooled into clusters and information flow was quantified according to prevailing occurrence of included articles. We derive a comprehensive domains oriented framework (DF) and visualize an information flow graph. The DF indicates that the utilization of ML is well established (e.g. stress detection, activity recognition). Because deployment and data acquisition currently relies heavily on mobile phones, only 65% of current applications make fully integrated use of data sources to assert patient’s mental state. Big data integration and a lack of commercially available devices to measure physiological or psychological parameters represent current bottlenecks to leverage synergies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Polanczyk, G.V., Salum, G.A., Sugaya, L.S., Caye, A., Rohde, L.A.: Annual research review. A meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. J. Child Psychol. Psychiatry 56, 345–365 (2015)

    Article  Google Scholar 

  2. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55, 78 (2012)

    Article  Google Scholar 

  3. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutorials 15, 1192–1209 (2013)

    Article  Google Scholar 

  4. Torous, J., Baker, J.T.: Why psychiatry needs data science and data science needs psychiatry. Connecting with technology. JAMA Psychiatry 73, 3–4 (2016)

    Article  Google Scholar 

  5. Iqbal, M.H., Aydin, A., Brunckhorst, O., Dasgupta, P., Ahmed, K.: A review of wearable technology in medicine. J. R. Soc. Med. 109, 372–380 (2016)

    Article  Google Scholar 

  6. Saeb, S., Zhang, M., Karr, C.J., Schueller, S.M., Corden, M.E., Kording, K.P., Mohr, D.C.: Mobile phone sensor correlates of depressive symptom severity in daily-life behavior. An exploratory study. J. Med. Internet Res. 17, e175 (2015)

    Article  Google Scholar 

  7. Atkins, L., Francis, J., Islam, R., O’Connor, D., Patey, A., Ivers, N., Foy, R., Duncan, E.M., Colquhoun, H., Grimshaw, J.M., et al.: A guide to using the theoretical domains framework of behaviour change to investigate implementation problems. Implementation Sci. 12, 1–18 (2017)

    Article  Google Scholar 

  8. Michie, S., Johnston, M., Abraham, C., Lawton, R., Parker, D., Walker, A.: Making psychological theory useful for implementing evidence based practice. A consensus approach. BMJ Qual. Saf., 14, 26–33 (2005)

    Article  Google Scholar 

  9. Vom Brocke, J., Riedl, R., Léger, P.-M.: Application strategies for neuroscience in information systems design science research. J. Comput. Inf. Syst. 53, 1–13 (2015)

    Google Scholar 

  10. Vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.: Reconstructing the giant. On the importance of rigour in documenting the literature search process. In: ECIS 2009 Proc., 9, 2206–2217 (2009)

    Google Scholar 

  11. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Shepperd, M., Hall, T. (eds.) EASE 2014, pp. 1–10. ACM (2014)

    Google Scholar 

  12. Setz, C., Arnrich, B., Schumm, J., La Marca, R., Tröster, G., Ehlert, U.: Discriminating stress from cognitive load using a wearable EDA device. IEEE Trans. Inf Technol. Biomed. 14, 410–417 (2010)

    Article  Google Scholar 

  13. Cohen, S., Kamarck, T., Mermelstein, R.: A global measure of perceived stress. J. Health Soc. Behav. 24, 385–396 (1983)

    Article  Google Scholar 

  14. Parkitny, L., McAule, J.: The depression anxiety stress scale (DASS). J. Physiotherapy 56, 204 (2010)

    Article  Google Scholar 

  15. Farhan, A.A., Lu, J., Bi, J., Russell, A., Wang, B., Bamis, A.: multi-view bi-clustering to identify smartphone sensing features indicative of depression. In: 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies, pp. 264–273. IEEE, Piscataway, NJ (2016)

    Google Scholar 

  16. Sioni, R., Chittaro, L.: Stress detection using physiological sensors. Computer 48, 26–33 (2015)

    Article  Google Scholar 

  17. Gravina, R., Fortino, G.: Automatic methods for the detection of accelerative cardiac defense response. IEEE Transac. Affect. Comput. 7, 286–298 (2016)

    Article  Google Scholar 

  18. Howarth, E., Hoffman, M.S.: A multidimensional approach to the relationship between mood and weather. Br. J. Psychol. 75(Pt 1), 15–23 (1984)

    Article  Google Scholar 

  19. Sanders, J.L., Brizzolara, M.S.: Relationships between weather and mood. J. Gen. Psychol. 107, 155–156 (1982)

    Article  Google Scholar 

  20. LiKamWa, R., Liu, Y., Lane, N.D., Zhong, L.: MoodScope. In: Chu, H.-H. (ed.) MobiSys ‘13 Proceeding of the 11th International Conference on Mobile Systems, Applications, and Services, p. 389. ACM (2013)

    Google Scholar 

  21. Ahsan, G.M.T., Addo, I.D., Ahamed, S.I., Petereit, D., Kanekar, S., Burhansstipanov, L., Krebs, L.U.: Toward an mHealth intervention for smoking cessation. In: Proceedings of the Annual International Computer Software and Applications Conference. COMPSAC (2013)

    Google Scholar 

  22. Sano, A., Phillips, A.J., Yu, A.Z., Mchill, A., Taylor, S., Jaques, N., Czeisler, C., Klerman, E., Picard, R.: Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones. In: International Conference on Wearable and Implantable Body Sensor Networks, pp. 1–6 (2015)

    Google Scholar 

  23. Sanders, C.E., Field, T.M., Diego, M., Kaplan, M.: The relationship of Internet use to depression and social isolation among adolescents. Adolescence 35, 237–242 (2000)

    Google Scholar 

  24. Cacioppo, J.T., Hawkley, L.C., Thisted, R.A.: Perceived social isolation makes me sad. 5-year cross-lagged analyses of loneliness and depressive symptomatology in the Chicago health, aging, and social relations study. Psychol. Aging 25, 453–463 (2010)

    Article  Google Scholar 

  25. Valenza, G., Nardelli, M., Lanata’, A., Gentili, C., Bertschy, G., Kosel, M., Scilingo, E.P.: Predicting mood changes in bipolar disorder through heartbeat nonlinear dynamics. IEEE J. Biomed. Health Inform. (2016)

    Google Scholar 

  26. Zhu, Z., Satizabal, H.F., Blanke, U., Perez-Uribe, A., Troster, G.: Naturalistic recognition of activities and mood using wearable electronics. IEEE Trans. Affect. Comput. 7, 272–285 (2016)

    Article  Google Scholar 

  27. Maxhuni, A., Hernandez-Leal, P., Sucar, E.L., Osmani, V., Morales, E.F., Mayora, O.: Stress modelling and prediction in presence of scarce data. J. Biomed. Inform. 63, 344–356 (2016)

    Article  Google Scholar 

  28. Faurholt-Jepsen, M., Busk, J., Frost, M., Vinberg, M., Christensen, E.M., Winther, O., Bardram, J.E., Kessing, L.V.: Voice analysis as an objective state marker in bipolar disorder. Transl. Psychiatry 6, e856 (2016)

    Article  Google Scholar 

  29. Frost, M., Doryab, A., Bardram, J.: Disease insights through analysis. Using machine learning to provide feedback in the MONARCA system. In: Czerwinski, M., Staff, I. (eds.) 7th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth 2013). ICST (2013)

    Google Scholar 

  30. Katsis, C.D., Katertsidis, N.S., Fotiadis, D.I.: An integrated system based on physiological signals for the assessment of affective states in patients with anxiety disorders. Biomed. Signal Process. Control 6, 261–268 (2011)

    Article  Google Scholar 

  31. Faedda, G.L., Ohashi, K., Hernandez, M., McGreenery, C.E., Grant, M.C., Baroni, A., Polcari, A., Teicher, M.H.: Actigraph measures discriminate pediatric bipolar disorder from attention-deficit/hyperactivity disorder and typically developing controls. J. Child Psychol. Psychiatry 57, 706–716 (2016)

    Article  Google Scholar 

  32. Grünerbl, A., Muaremi, A., Osmani, V., Bahle, G., Ohler, S., Tröster, G., Mayora, O., Haring, C., Lukowicz, P.: Smartphone-based recognition of states and state changes in bipolar disorder patients. IEEE J. Biomed. Health Inform. 19, 140–148 (2015)

    Article  Google Scholar 

  33. Bogomolov, A., Lepri, B., Ferron, M., Pianesi, F., Pentland, A.: Daily Stress Recognition from Mobile Phone Data, Weather Conditions and Individual Traits. In: Hua, K.A. (ed.) MM ‘14: Proceedings of the 22nd ACM international conference on Multimedia, pp. 477–486. ACM (2014)

    Google Scholar 

  34. Liu, H.-Y., Dunea, D., Oprea, M., Savu, T., Iordache, S.: Improving the protection of children against air pollution threats in Romania—the RokidAIR project approach and future perspectives. Nukleonika -Original Edition- 68, 841–846 (2017)

    Google Scholar 

  35. Baig, M.M., GholamHosseini, H., Moqeem, A.A., Mirza, F., Lindé, M.: A systematic review of wearable patient monitoring systems—current challenges and opportunities for clinical adoption. J. Med. Syst. 41, 115 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max-Marcel Theilig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Theilig, MM., Blankenhagel, K.J., Zarnekow, R. (2019). A Domains Oriented Framework of Recent Machine Learning Applications in Mobile Mental Health. In: Davis, F., Riedl, R., vom Brocke, J., Léger, PM., Randolph, A. (eds) Information Systems and Neuroscience. Lecture Notes in Information Systems and Organisation, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-01087-4_20

Download citation

Publish with us

Policies and ethics