Skip to main content

Case Based Reasoning as a Model for Cognitive Artificial Intelligence

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2018)

Abstract

Cognitive Systems understand the world through learning and experience. Case Based Reasoning (CBR) systems naturally capture knowledge as experiences in memory and they are able to learn new experiences to retain in their memory. CBR’s retrieve and reuse reasoning is also knowledge-rich because of its nearest neighbour retrieval and analogy-based adaptation of retrieved solutions. CBR is particularly suited to domains where there is no well-defined theory, because they have a memory of experiences of what happened, rather than why/how it happened. CBR’s assumption that ‘similar problems have similar solutions’ enables it to understand the contexts for its experiences and the ‘bigger picture’ from clusters of cases, but also where its similarity assumption is challenged. Here we explore cognition and meta-cognition for CBR through self-reflection and introspection of both memory and retrieve and reuse reasoning. Our idea is to embed and exploit cognitive functionality such as insight, intuition and curiosity within CBR to drive robust, and even explainable, intelligence that will achieve problem-solving in challenging, complex, dynamic domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the term ‘understanding’ in the sense of ‘interpret in order to give meaning’ for the system involved.

  2. 2.

    EPSRC FIT Priority www.epsrc.ac.uk/research/ourportfolio/themes/ict/introduction/crossictpriorities/futureintelligenttechnologies/.

  3. 3.

    https://www.ibm.com/watson/services/knowledge-studio/.

References

  1. Kelly III, J.E., Hamm, S.: Smart Machines: IBM’s Watson and the Era of Cognitive Computing. Columbia University Press, New York (2013)

    Book  Google Scholar 

  2. Langley, P.: The cognitive systems paradigm. In: Advances in Cognitive Systems, vol. 1, pp. 3–13 (2012)

    Google Scholar 

  3. Nirenburg, S.: Cognitive systems: towards human-level functionality. AI Mag. 38(4), 5–12 (2017)

    Article  Google Scholar 

  4. Langley, P.: Interactive cognitive systems and social intelligence. IEEE Intell. Syst. 32(4), 22–30 (2017)

    Article  Google Scholar 

  5. Langley, P.: Meta-algorithms in cognitive computing. IEEE Intell. Syst. 32(4), 35–39 (2017)

    Article  Google Scholar 

  6. Launchbury, J.: A DARPA perspective on artificial intelligence (2017). http://www.darpa.mil/attachments/AIFull.pdf, http://machinelearning.technicacuriosa.com/2017/03/19/a-darpa-perspective-on-artificial-intelligence

  7. Domingos, P.: The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Basic Books, New York (2015)

    Google Scholar 

  8. Vasant, D., Pedro, D.: Pedro domingos on the master algorithm: a conversation with vasant dhar. Big Data 4(1), 10–13 (2016). https://doi.org/10.1089/big.2016.29003.pdo

    Article  Google Scholar 

  9. Forbus, K., Hinrichs, T.: Analogy and qualitative representation in the companion cognitive architecture. AI Mag. 38(4), 5–12 (2017)

    Article  Google Scholar 

  10. Kahneman, D.: Thinking, Fast and Slow. Farrar Straus Giroux, New York (2011)

    Google Scholar 

  11. Austin, T., LeHong, H.: Digital business innovation with smart machines. Report G00265758, Gartner, Stamford, CT, August 2014. http://www.gartner.com/doc/2818821/digital-business-innovation-smart-machines

  12. Spohrer, J., Banavar, G.: Cognition as a service: an industry perspective. AAAI Artif. Intell. Mag. Winter 36, 71–86 (2015)

    Google Scholar 

  13. Cox, M.T.: Metacognition in computation: a selected research review. Artif. Intell. 169(2), 104–141 (2005). https://doi.org/10.1016/j.artint.2005.10.009

    Article  Google Scholar 

  14. Richter, M.M.: Knowledge containers. http://pages.cpsc.ucalgary.ca/~mrichter/Papers/Knowledge%20Containers.pdf

  15. Rumsfeld, D.: Press Conference, NATO HQ, Brussels, June 2002. http://www.nato.int/docu/speech/2002/s020606g.htm

  16. Smyth, B., McKenna, E.: Competence models and the maintenance problem. Comput. Intell. 17(2), 235–249 (2001). https://doi.org/10.1111/0824-7935.00142

    Article  Google Scholar 

  17. Craw, S., Massie, S., Wiratunga, N.: Informed case base maintenance: a complexity profiling approach. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, Vancouver, Canada, pp. 1618–1621. AAAI Press (2007). http://www.aaai.org/Papers/AAAI/2007/AAAI07-258.pdf

  18. Jarmulak, J., Craw, S., Rowe, R.: Self-optimising CBR retrieval. In: Proceedings of the 12th IEEE International Conference on Tools with AI, Vancouver, Canada, pp. 376–383. IEEE Press (2000). https://doi.org/10.1109/TAI.2000.889897

  19. Jalali, V., Leake, D., Forouzandehmehr, N.: Learning and applying case adaptation rules for classification: an ensemble approach. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, Australia, pp. 4874–4878. AAAI Press (2017). http://static.ijcai.org/proceedings-2017/0685.pdf

  20. McDonnell, N., Cunningham, P.: A knowledge-light approach to regression using case-based reasoning. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 91–105. Springer, Heidelberg (2006). https://doi.org/10.1007/11805816_9

    Chapter  Google Scholar 

  21. Murdock, J.W.: Structure mapping for jeopardy! clues. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS (LNAI), vol. 6880, pp. 6–10. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23291-6_2

    Chapter  Google Scholar 

  22. Ferrucci, D., et al.: Building watson: an overview of the DeepQA project. AAAI Artif. Intell. Mag. Fall 31, 59–79 (2010)

    Google Scholar 

  23. Murdock, (ed.) J.W.: This is Watson (Special Issue). IBM J. Res. Dev. 56(3–4) (2012)

    Google Scholar 

  24. Ferrucci, D., Levas, A., Bagchi, S., Gondek, D., Mueller, E.: Watson: beyond jeopardy!. Artif. Intell. 199–200, 93–105 (2013). https://doi.org/10.1016/j.artint.2012.06.009

    Article  Google Scholar 

  25. Kalyanpur, A., Murdock, J.W.: Unsupervised entity-relation analysis in IBM Watson. In: Proceedings of the Third Annual Conference on Advances in Cognitive Systems, pp. 12:2–12:12 (2015). http://www.cogsys.org/papers/ACS2015/article12.pdf

  26. Goel, A.K., Polepeddi, L.: Jill watson: a virtual teaching assistant for online education. Presented to the Learning Engineering for Online Learning Workshop, Harvard University (2017). http://smartech.gatech.edu/handle/1853/59104

  27. Silver, D., Huang, A., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016). https://doi.org/10.1038/nature16961

    Article  Google Scholar 

  28. Brown, N., Kroer, C., Sandholm, T.: Dynamic thresholding and pruning for regret minimization. In: Proceeding of the 31st AAAI Conference on Artificial Intelligence, San Francisco, CA, pp. 421–429. AAAI Press (2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14855/13793

  29. Rubin, J., Watson, I.: On combining decisions from multiple expert imitators of performance. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain, pp. 344–349. AAAI Press (2011). http://ijcai.org/Proceedings/11/Papers/067.pdf

  30. Rubin, J., Watson, I.: Decision generalisation from game logs in No Limit Texas Hold’Em. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), Beijing, China, pp. 3062–3066. AAAI Press (2013). http://dl.acm.org/citation.cfm?id=2540128.2540578

  31. Cox, M.T., Alavi, Z., Dannenhauer, D., Eyorokon, V., Muñoz-Avila, H., Perlis, D.: MIDCA: a meta cognitive, integrated dual-cycle architecture for self-regulated autonomy. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, AZ, pp. 3712–3718. AAAI Press (2016). http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12292/12151

  32. Muñoz-Avila, H., Dannenhauer, D., Cox, M.T.: Towards cognition-level goal reasoning for playing real-time strategy games. In: Annual Conference on Advances in Cognitive Systems: Workshop on Goal Reasoning, pp. 120–132 (2015). http://smartech.gatech.edu/handle/1853/53646

  33. Kim, J., Banks, C., Shah, J.: Collaborative planning with encoding of users high-level strategies. In: Proceeding of the 31st AAAI Conference on Artificial Intelligence, San Francisco, CA, pp. 955–961. AAAI Press (2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14840/13867

  34. Gottlieb, J., Oudeyer, P.Y., Lopes, M., Baranes, A.: Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends Cogn. Sci. 17(11), 585–593 (2013). https://doi.org/10.1016/j.tics.2013.09.001

    Article  Google Scholar 

  35. Lupiani, E., Massie, S., Craw, S., Juarez, J.M., Palma, J.: Case-base maintenance with multi-objective evolutionary algorithms. J. Intell. Inf. Syst. 46(2), 259–284 (2016). https://doi.org/10.1007/s10844-015-0378-z

    Article  Google Scholar 

  36. Jalali, V., Leake, D.: Adaptation-guided case base maintenance. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, Quebec, Canada, pp. 1875–1881. AAAI Press (2014). http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/8360/8824

  37. Houeland, T.G., Aamodt, A.: An introspective component-based approach for meta-level reasoning in clinical decision-support systems. In: Proceedings of the 1st Norwegian Artificial Intelligence Symposium (NAIS 2009), Trondheim, Tapir Forlag, pp. 121–132 (2009)

    Google Scholar 

  38. Houeland, T.G., Aamodt, A.: A learning system based on lazy meta reasoning. In: Progress in Artificial Intelligence (In Press, Online November 2017). https://doi.org/10.1007/s13748-017-0138-0

    Article  Google Scholar 

  39. Dong, R., OMahony, M.P., Schaal, M., McCarthy, K., Smyth, B.: Combining similarity and sentiment in opinion mining for productrecommendation. Intell. Inf. Syst. 46(2), 285–312 (2016). https://doi.org/10.1007/s10844-015-0379-y

    Article  Google Scholar 

  40. Dong, R., Schaal, M., O’Mahony, M.P., Smyth, B.: Topic extraction from online reviews for classification and recommendation. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), Beijing, China, pp. 1310–1316. AAAI Press (2013). http://dl.acm.org/citation.cfm?id=2540128.2540317

  41. Massie, S., Craw, S., Wiratunga, N.: Complexity-guided case discovery for case based reasoning. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI 2005), Pittsburgh, PA, pp. 216–221. AAAI Press (2005). http://www.aaai.org/Papers/AAAI/2005/AAAI05-035.pdf

  42. Recio-Garcia, J.A., Wiratunga, N.: Taxonomic semantic indexing for textual case-based reasoning. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS (LNAI), vol. 6176, pp. 302–316. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14274-1_23

    Chapter  Google Scholar 

  43. Craw, S., Jarmulak, J., Rowe, R.: Maintaining retrieval knowledge in a case-based reasoning system. Comput. Intell. 17(2), 346–363 (2001). https://doi.org/10.1111/0824-7935.00149

    Article  MATH  Google Scholar 

  44. Sizov, G., Öztürk, P., Aamodt, A.: Evidence-driven retrieval in textual CBR: bridging the gap between retrieval and reuse. In: Hüllermeier, E., Minor, M. (eds.) ICCBR 2015. LNCS (LNAI), vol. 9343, pp. 351–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24586-7_24

    Chapter  Google Scholar 

  45. Murdock, J.W., Goel, A.: Meta-case-based reasoning: self-improvement through self-understanding. J. Exp. Theor. Artif. Intell. 20(1), 1–36 (2008). https://doi.org/10.1080/09528130701472416

    Article  Google Scholar 

  46. Craw, S., Wiratunga, N., Rowe, R.C.: Learning adaptation knowledge to improve case-based reasoning. Artif. Intell. 170(16–17), 1175–1192 (2006). https://doi.org/10.1016/j.artint.2006.09.001

    Article  MathSciNet  MATH  Google Scholar 

  47. Arcos, J.L., Mulayim, O., Leake, D.B.: Using introspective reasoning to improve CBR system performance. In: Meta reasoning: Thinking about Thinking, pp. 167–182. MIT Press (2011). https://doi.org/10.7551/mitpress/9780262014809.003.0011

    Chapter  Google Scholar 

  48. Leake, D., Powell, J.: A general introspective reasoning approach to web search for case adaptation. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS (LNAI), vol. 6176, pp. 186–200. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14274-1_15

    Chapter  Google Scholar 

  49. Jayanthi, K., Chakraborti, S., Massie, S.: Introspective knowledge revision in textual case-based reasoning. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS (LNAI), vol. 6176, pp. 171–185. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14274-1_14

    Chapter  Google Scholar 

  50. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994). citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.1670

    Google Scholar 

  51. de Mántaras, R.L., et al.: Retrieval, reuse, revision, and retention in case-based reasoning. Knowl. Eng. Rev. 20(3), 215–240 (2005). https://doi.org/10.1017/S0269888906000646

    Article  Google Scholar 

  52. Rowley, J.: The wisdom hierarchy: representations of the DIKW hierarchy. J. Inf. Sci. 33(2), 163–180 (2009). https://doi.org/10.1177/0165551506070706

    Article  Google Scholar 

Download references

Acknowledgments

Susan Craw wishes to thank Stewart Massie for very helpful discussions of cognition and curiosity during the early stages of developing a research proposal on cognitive CBR that underpins this paper. Agnar Aamodt wishes to thank Enric Plaza for discussions of CBR, analogy, and cognition relevant to this paper, in preparing an invited talk at ICCBR 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Craw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Craw, S., Aamodt, A. (2018). Case Based Reasoning as a Model for Cognitive Artificial Intelligence. In: Cox, M., Funk, P., Begum, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2018. Lecture Notes in Computer Science(), vol 11156. Springer, Cham. https://doi.org/10.1007/978-3-030-01081-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01081-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01080-5

  • Online ISBN: 978-3-030-01081-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics