Skip to main content

On the Role of Similarity in Analogical Transfer

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11156))

Abstract

Analogical transfer consists in making the assumption that if two situations are alike in some respect, they may be alike in others. This article explores the links that exist between analogical transfer and the qualitative measurement of differences. The main idea is to formulate the similarity principle as a dependency between two measurements of difference. Analogical transfer is formulated as a similarity-based reasoning: it is plausible that equally different pairs in a certain dimension are also equally different in another dimension, at least for pairs that are not too (analogically) dissimilar.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term variation was introduced in [1] to denote a qualitative representation of differences between two or more states. In [1], (binary) variations were represented by functions whose domain is the set of pairs.

  2. 2.

    The latter are a very common way to represent differences between two objects, although not the only one. Variations could for example represent complex rewriting rules, such as term reduction relations.

References

  1. Badra, F.: Representing and learning variations. In: International Conference on Tools for Artificial Intelligence, pp. 950–957. IEEE, Vietri sul Mare (2015). https://doi.org/10.1109/ICTAI.2015.137

  2. Badra, F.: Reasoning with co-variations. In: Artificial Intelligence: Methodology, Systems, and Applications - 17th International Conference, AIMSA, Varna, Bulgaria (2016). https://doi.org/10.1007/978-3-319-44748-3_20

    Chapter  Google Scholar 

  3. Bounhas, M., Prade, H., Richard, G.: Analogy-based classifiers for nominal or numerical data. Int. J. Approx. Reason. 91, 36–55 (2017). https://doi.org/10.1016/j.ijar.2017.08.010

    Article  MathSciNet  MATH  Google Scholar 

  4. Craw, S., Wiratunga, N., Rowe, R.C.: Learning adaptation knowledge to improve case-based reasoning. Artif. Intell. 170(16–17), 1175–1192 (2006). https://doi.org/10.1016/j.artint.2006.09.001

    Article  MathSciNet  MATH  Google Scholar 

  5. D’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case base mining for adaptation knowledge acquisition. In: IJCAI International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 750–755 (2007)

    Google Scholar 

  6. Davis, T.R., Russell, S.J.: A logical approach to reasoning by analogy. In: IJCAI International Joint Conference on Artificial Intelligence (1987)

    Google Scholar 

  7. De Amo, S., Diallo, M.S., Diop, C.T., Giacometti, A., Li, D., Soulet, A.: Contextual preference mining for user profile construction. Inf. Syst. 49(April), 182–199 (2015). https://doi.org/10.1016/j.is.2014.11.009

    Article  Google Scholar 

  8. Derrac, J., Schockaert, S.: Inducing semantic relations from conceptual spaces: a data-driven approach to plausible reasoning. Artif. Intell. 228, 66–94 (2015). https://doi.org/10.1016/j.artint.2015.07.002

    Article  MathSciNet  MATH  Google Scholar 

  9. Fuchs, B., Lieber, J., Mille, A., Napoli, A.: Differential adaptation: an operational approach to adaptation for solving numerical problems with CBR. Knowl.-Based Syst. 68, 103–114 (2014). https://doi.org/10.1016/j.knosys.2014.03.009

    Article  Google Scholar 

  10. Gust, H., Krumnack, U., Kühnberger, K., Schwering, A.: Analogical reasoning: a core of cognition. KI - Künstliche Intelligenz 22(1), 8–12 (2008)

    Google Scholar 

  11. Hammond, K.J.: CHEF: a model of case-based planning. In: AAAI Proceedings, pp. 267–271 (1986)

    Google Scholar 

  12. Hanney, K., Keane, M.T.: The adaptation knowledge bottleneck: howto ease it by learning from cases. In: International Conference on Case-Based Reasoning, vol. 1266, pp. 359–370 (1997)

    Chapter  Google Scholar 

  13. Hug, N., Prade, H., Richard, G., Serrurier, M.: Analogical classifiers: a theoretical perspective. In: 22nd European Conference on Artificial Intelligence - ECAI, vol. 285, pp. 689–697 (2016). DOIurl10.3233/978-1-61499-672-9-689

    Google Scholar 

  14. Hüllermeier, E.: Possibilistic instance-based learning. Artif. Intell. 148(1–2), 335–383 (2003). https://doi.org/10.1016/S0004-3702(03)00019-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Jalali, V., Leake, D., Forouzandehmehr, N.: Learning and applying case adaptation rules for classification: an ensemble approach. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 4874–4878 (2017)

    Google Scholar 

  16. Lieber, J.: Application of the revision theory to adaptation in case-based reasoning: the conservative adaptation. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 239–253. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74141-1_17

    Chapter  Google Scholar 

  17. Lieber, J., Napoli, A.: Correct and complete retrieval for case-based problem-solving. In: ECAI, pp. 68–72 (1998)

    Google Scholar 

  18. McSherry, D.: Demand-driven discovery of adaptation knowledge. In: IJCAI, pp. 222–227 (1999)

    Google Scholar 

  19. Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: definition, algorithms and two experiments in machine learning. J. Artif. Intell. Res. 32, 793–824 (2008)

    Article  MathSciNet  Google Scholar 

  20. Mitchell, T.M.: Machine Learning. Elsevier (1983)

    Google Scholar 

  21. Novick, L.R., Holyoak, K.J.: Mathematical problem solving by analogy. J. Exp. Psychol. Learn. Mem. Cogn. 17(3), 398–415 (1991). https://doi.org/10.1037/0278-7393.17.3.398. http://www.ncbi.nlm.nih.gov/pubmed/1829473

    Article  Google Scholar 

  22. Novick, L.R.: Analogical transfer, problem similarity, and expertise. J. Exp. Psychol. Learn. Mem. Cogn. 14(3), 510–529 (1988)

    Article  Google Scholar 

  23. Ontañón, S., Plaza, E.: On knowledge transfer in case-based inference. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS (LNAI), vol. 7466, pp. 312–326. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32986-9_24

    Chapter  Google Scholar 

  24. Paritosh, P.K., Klenk, M.E.: Cognitive processes in quantitative estimation: analogical anchors and causal adjustment. In: Proceedings of the 28th Annual Conference of the Cognitive Science Society (CogSci-06) (2006). http://www.cs.northwestern.edu/~mek802/papers/knack-formatted.pdf

  25. Pirlot, M., Prade, H., Richard, G.: Completing preferences by means of analogical proportions. Model. Decis. Artif. Intell. 4617, 318–329 (2016). https://doi.org/10.1007/978-3-540-73729-2

    Article  Google Scholar 

  26. Prade, H., Richard, G.: Reasoning with logical proportions. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference, (KR), Toronto, Canada, pp. 545–555 (2010)

    Google Scholar 

  27. Prade, H., Richard, G.: Analogical inequalities. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 3–9. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61581-3_1

    Chapter  Google Scholar 

  28. Robert, F.S.: Measurement Theory (1985)

    Google Scholar 

  29. Tversky, A.: Features of similarity. In: Readings in Cognitive Science: A Perspective from Psychology and Artificial Intelligence, pp. 290–302. Elsevier Inc., October 2013

    Google Scholar 

  30. Yao, Y.Y.: Qualitative similarity. In: Suzuki, Y., Ovaska, S., Furuhashi, T., Roy, R., Dote, Y. (eds.) Soft Computing in IndustrialApplications, pp. 339–348. Springer, London (2000). https://doi.org/10.1007/978-1-4471-0509-1_29

    Chapter  Google Scholar 

  31. Žabkar, J., Bratko, I., Demšar, J.: Extracting qualitative relations from categorical data. Artif. Intell. 239, 54–69 (2016). https://doi.org/10.1016/j.artint.2016.06.007

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Badra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badra, F., Sedki, K., Ugon, A. (2018). On the Role of Similarity in Analogical Transfer. In: Cox, M., Funk, P., Begum, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2018. Lecture Notes in Computer Science(), vol 11156. Springer, Cham. https://doi.org/10.1007/978-3-030-01081-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01081-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01080-5

  • Online ISBN: 978-3-030-01081-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics