Skip to main content

Novel Object Discovery Using Case-Based Reasoning and Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11156))

Abstract

The development of Convolutional Neural Networks (CNNs) has resulted in significant improvements to object classification and detection in image data. One of their primary benefits is that they learn image features rather than relying on hand-crafted features, thereby reducing the amount of knowledge engineering that must be performed. However, another form of knowledge engineering bias exists in how objects are labelled in images, thereby limiting CNNs to classifying the set of object types that have been predefined by a domain expert. We describe a case-based method for detecting novel object types using a combination of an image’s raw pixel values and detectable parts. Our approach works alongside existing CNN architectures, thereby leveraging the state-of-the-art performance of CNNs, and is able to detect novel classes using limited training instances. We evaluate our approach using an existing object detection dataset and provide evidence of our approach’s ability to classify images even if the object in the image has not been previously encountered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This example assumes a step size of 1, where the center on the filter is moved by 1 pixel at each step. However, in practice the step size can be set as a parameter.

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems, pp. 1106–1114, Lake Tahoe, USA (2012)

    Google Scholar 

  2. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. IEEE Computer Society, Columbus (2014)

    Google Scholar 

  3. Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what you can: Detecting and representing objects using holistic models and body parts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1979–1986. IEEE Computer Society, Columbus (2014)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE Computer Society, Las Vegas (2016)

    Google Scholar 

  5. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  6. Sani, S., Wiratunga, N., Massie, S.: Learning deep features for kNN-based Human Activity Recognition. In: Proceedings of the International Conference on Case-Based Reasoning Workshops, pp. 95–103. CEUR Workshop Proceedings, Trondheim (2017)

    Google Scholar 

  7. Sani, S., Wiratunga, N., Massie, S., Cooper, K.: kNN sampling for personalised human activity recognition. In: Aha, D.W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339, pp. 330–344. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61030-6_23

    Chapter  Google Scholar 

  8. Martin, K., Wiratunga, N., Sani, S., Massie, S., Clos, J.: A Convolutional siamese network for developing similarity knowledge in the SelfBACK dataset. In: Proceedings of the International Conference on Case-Based Reasoning Workshops, pp. 85–94. CEUR Workshop Proceedings, Trondheim (2017)

    Google Scholar 

  9. Grace, K., Maher, M.L., Wilson, D.C., Najjar, N.A.: Combining CBR and deep learning to generate surprising recipe designs. In: Goel, A., Díaz-Agudo, M.B., Roth-Berghofer, T. (eds.) ICCBR 2016. LNCS (LNAI), vol. 9969, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47096-2_11

    Chapter  Google Scholar 

  10. Perner, P., Holt, A., Richter, M.: Image processing in case-based reasoning. Knowledge Engineering Review 20(3), 311–314 (2005)

    Article  Google Scholar 

  11. Macura, R.T., Macura, K.J.: MacRad: Radiology image resource with a case-based retrieval system. In: Veloso, M., Aamodt, A. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 43–54. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60598-3_5

    Chapter  MATH  Google Scholar 

  12. Haddad, M., Adlassnig, K.-P., Porenta, G.: Feasibility analysis of a case-based reasoning system for automated detection of coronary heart disease from myocardial scintigrams. Artif. Intell. Med. 9(1), 61–78 (1997)

    Article  Google Scholar 

  13. Allampalli-Nagaraj, G., Bichindaritz, I.: Automatic semantic indexing of medical images using a web ontology language for case-based image retrieval. Eng. Appl. Artif. Intell. 22(1), 18–25 (2009)

    Article  Google Scholar 

  14. Perner, P., Bühring, A.: Case-based object recognition. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 375–388. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28631-8_28

    Chapter  Google Scholar 

  15. Micarelli, A., Neri, A., Sansonetti, G.: A case-based approach to image recognition. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 443–454. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44527-7_38

    Chapter  Google Scholar 

  16. López-Sánchez, D., Corchado, J.M., González Arrieta, A.: A CBR system for efficient face recognition under partial occlusion. In: Aha, D.W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339, pp. 170–184. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61030-6_12

    Chapter  Google Scholar 

  17. López-Sánchez, D., Corchado, J.M., González Arrieta, A.: A CBR system for image-based webpage classification: case representation with convolutional neural networks. In: Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference, pp. 483–488. AAAI Press, Marco Island (2017)

    Google Scholar 

  18. Tuytelaars, T., Lampert, C.H., Blaschko, M.B., Buntine, W.L.: Unsupervised object discovery: a comparison. Int. J. Comput. Vis. 88(2), 284–302 (2010)

    Article  Google Scholar 

  19. Zhu, J.-Y., Wu, J., Xu, Y., Chang, E., Tu, Z.: Unsupervised object class discovery via saliency-guided multiple class learning. IEEE Trans. Pattern Anal. Mach. Intell. 37(4), 862–875 (2015)

    Article  Google Scholar 

  20. Chen, X., Shrivastava, A., Gupta, A.: Enriching visual knowledge bases via object discovery and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2035–2042. IEEE Computer Society, Columbus (2014)

    Google Scholar 

  21. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  22. Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)

    MATH  Google Scholar 

  23. Aaron, B., Tamir, D.E., Rishe, N.D., and Kandel, A.: Dynamic incremental k-means clustering. In: Proceedings of the International Conference on Computational Science and Computational Intelligence, pp. 308–313. IEEE Press, Las Vegas (2014)

    Google Scholar 

Download references

Acknowledgements

Thanks to the Office of Naval Research for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Floyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Turner, J.T., Floyd, M.W., Gupta, K.M., Aha, D.W. (2018). Novel Object Discovery Using Case-Based Reasoning and Convolutional Neural Networks. In: Cox, M., Funk, P., Begum, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2018. Lecture Notes in Computer Science(), vol 11156. Springer, Cham. https://doi.org/10.1007/978-3-030-01081-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01081-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01080-5

  • Online ISBN: 978-3-030-01081-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics