Advertisement

Framework to Predict Bipolar Episodes

Sensor Fusion of Electrodermal Activity Heart Rate Variability Sleep Patterns
  • Arshia Khan
  • Yumna Anwar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 869)

Abstract

Patients suffering from Bipolar disorder (BD) experience repeated relapses of depressive and manic states. The extremity of this disorder can lead to many unpleasant events, even suicide attempts, which make early detection vital. Presently, the primary method for identifying these states is evaluation by psychiatrists based on patient’s self-reporting. However, ubiquitous use of mobile devices in combination with sensor fusion has the potential to provide a faster and convenient alternative mode of diagnosis to better manage the illness. This paper proposes a continuous, autonomous sensor fusion based monitoring framework to identify and predict state changes in patients suffering from bipolar disorder. Instead of relying on subjective self-reported data, the proposed system uses sensors to measure and collect, Heart Rate Variability, Quantity and Quality of sleep and Electrodermal activity data as predictors to discern between the two bipolar states. Using classification techniques along with a fusion algorithm, a prediction algorithm can be derived based on all the sensor modalities, gathered via a mobile application, is used to set alerts and visualize the information and results efficiently.

Keywords

Bipolar disorder Mobile applications Sleep Electrodermal activity Heart rate variability 

References

  1. 1.
    Merikangas, K.R., Jin, R., He, J., Kessler, R.C., Lee, S., Sampson, N.A., Viana, M.C., Andrade, L.H., Hu, C., Karam, E.G., Ladea, M., Medina-Mora, M.E., Ono, Y., Posada-Villa, J., Sagar, R., Wells, J.E., Zarkov, Z.: Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch. Gen. Psychiatry 68(3), 241–251 (2011).  https://doi.org/10.1001/archgenpsychiatry.2011.12CrossRefGoogle Scholar
  2. 2.
    Kleinman, L.S., Lowin, A., Flood, E., et al.: Costs of bipolar disorder. Pharmacoeconomics 21, 601 (2003).  https://doi.org/10.2165/00019053-200321090-00001CrossRefGoogle Scholar
  3. 3.
    Dilsaver, S.C.: An estimate of the minimum economic burden of bipolar I and II disorders in the United States: 2009. J. Affect. Disord. 129 (1–3), 79–83 (2011). ISSN 0165-0327.  https://doi.org/10.1016/j.jad.2010.08.030CrossRefGoogle Scholar
  4. 4.
    Baldessarini, Ross, Tondo, Leonardo: Suicide risk and treatments for patients with bipolar disorder. JAMA: J. Am. Med. Assoc. 290, 1517–1519 (2003).  https://doi.org/10.1001/jama.290.11.1517CrossRefGoogle Scholar
  5. 5.
    Simon, G.E., Unützer, J.: Health care utilization and costs among patients treated for bipolar disorder in an insured population. Psychiatric Serv. 50(10), 1303–1308 (1999)CrossRefGoogle Scholar
  6. 6.
    Simon, G.E.: Social and economic burden of mood disorders. Biological Psychiatry 54(3), 208–215 (2003). ISSN 0006-3223.  https://doi.org/10.1016/S0006-3223(03)00420-7CrossRefGoogle Scholar
  7. 7.
    Miller, C J., Johnson, S L., Eisner, L.: Assessment tools for adult bipolar disorder. Clinical Psychol.  (A publication of the Division of Clinical Psychology of the American Psychological Association) 16(2), 188–201 (2009). PMC. Web. 30 Dec 2017Google Scholar
  8. 8.
    Edelstein, B.A., Shreve-Neiger, A., Scheck, S.A.: Depression in late life. In: Spielberger, C.D. (ed.) Encyclopedia of Applied Psychology, pp. 593–599. Elsevier, New York (2004). ISBN 9780126574104,  https://doi.org/10.1016/B0-12-657410-3/00716-9CrossRefGoogle Scholar
  9. 9.
    Baldassano, C.: Reducing the burden of bipolar disorder for patient and caregiver. Medscape Psychiatry Mental Health 9(2), 38–45 (2004)Google Scholar
  10. 10.
    Bardram, J.E., Frost, M., Szántó, K, Faurholt-Jepsen, M., Vinberg, M., Kessing, L.V.: Designing mobile health technology for bipolar disorder: a field trial of the monarca system. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’13. ACM, Paris, France, pp. 2627–2636 (2013). ISBN: 978-1-4503-1899-0.  https://doi.org/10.1145/2470654.2481364
  11. 11.
    Matthews, M., Doherty, G.: In the mood: engaging teenagers in psychotherapy using mobile phones. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI’11. ACM, Vancouver, BC, Canada, pp. 2947–2956 (2011). ISBN: 978-1-4503-0228-9. http://doi.acm.org/10.1145/1978942.1979379 (cit. On p. 11)
  12. 12.
    Grünerbl, A., Muaremi, A., Osmani, V., Bahle, G., Öhler, S., Tröster, G., Mayora, O., Haring, C., Lukowicz, P.: Smartphone-based recognition of states and state changes in bipolar disorder patients. IEEE J Biomedical Health Inform. 19(1), 140–148 (2015). ISSN: 2168-2194.  https://doi.org/10.1109/jbhi.2014.2343154 (cit. on pp. 7, 9, 11)CrossRefGoogle Scholar
  13. 13.
    Greco, A. Lanatà, A., Valenza, G., Rota, G., Vanello, N., Scilingo, E.P.: On the deconvolution analysis of electrodermal activity in bipolar patients. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6691–6694 (Aug 2012).  https://doi.org/10.1109/EMBC.2012.6347529 (cit. on pp. 3, 4, 6, 8, 9, 11)
  14. 14.
    Valenza, G., Nardelli, M., Lanata, A., Gentili, C., Bertschy, G., Scilingo, E.P.: Predicting mood changes in bipolar disorder through heartbeat nonlinear dynamics: a preliminary study. In: 2015 Computing in Cardiology Conference (CinC), pp. 801–804, Sept 2015.  https://doi.org/10.1109/cic.2015.7411032 (cit. On pp. 3, 7, 10, 11)
  15. 15.
    Migliorini, M., Mariani, S., Bertschy, G., Kosel, M., Bianchi, A.M.: Can home-monitoring of sleep predict depressive episodes in bipolar patients? In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, pp. 2215–2218 (2015).  https://doi.org/10.1109/embc.2015.7318831
  16. 16.
    Greco, A., Lanatà, A., Valenza, G., Rota, G., Vanello, N., Scilingo, E.P.: On the deconvolution analysis of electrodermal activity in bipolar patients. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6691–6694 (Aug 2012).  https://doi.org/10.1109/EMBC.2012.6347529 (cit. on pp. 3, 4, 6, 8, 9, 11)
  17. 17.
    Greco, A., Valenza, G., Scilingo, E P.: Advances in electrodermal activity processing with applications for mental healthGoogle Scholar
  18. 18.
    Benedek, M., Kaernbach, C.: A continuous measure of phasic electrodermal activity. J. Neurosci. Methods. 190(1), 80–91 (2010). ISSN 0165-0270.  https://doi.org/10.1016/j.jneumeth.2010.04.028CrossRefGoogle Scholar
  19. 19.
    Valenza, G., Nardelli, M., Lanata, A., Gentili, C., Bertschy, G., Scilingo, E.P.: Predicting mood changes in bipolar disorder through heartbeat nonlinear dynamics: a preliminary study. In: 2015 Computing in Cardiology Conference (CinC), pp. 801–804 (Sept 2015).  https://doi.org/10.1109/cic.2015.7411032 (cit. On pp. 3, 7, 10, 11)
  20. 20.
    Malik, M., Bigger, J.T., Camm, A.J., Kleiger, R.E., Malliani, A., Moss, A.J., Schwartz, P.J.: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996)CrossRefGoogle Scholar
  21. 21.
    Melillo, P., Bracale, M., Pecchia, L.: Nonlinear heart rate variability features for real-life stress detection. case study: students under stress due to university examination. BioMed. Eng. Online 10(1), 96 (2011). ISSN: 1475-925X.  https://doi.org/10.1186/1475-925X-10-96CrossRefGoogle Scholar
  22. 22.
    Hagen, K., Langbein, J., Schmied, C., Lexer, D., Waiblinger, S.: Heart rate variability in dairy cows—influences of breed and milking system. Physiol. Behav. 85, 195–204 (2005)CrossRefGoogle Scholar
  23. 23.
    Tarvainen, M.P., Niskanen, J.-P., Lipponen, J.A., Ranta-aho, P.O., Karjalainen, P.A.: Kubios HRV—heart rate variability analysis software. Comput. Methods Prog. Biomed. 113(1), 210–220 (2012). ISSN: 0169-2607.doi:10.1016/j.cmpb.2013.07.024. http://dx.doi.org/10.1016/j.cmpb.2013.07.024 (cit. on p. 5)CrossRefGoogle Scholar
  24. 24.
    Dimitriev, D.A., Saperova, E.V., Dimitriev, A.D.: State anxiety and nonlinear dynamics of heart rate variability in students. PLoS ONE 11(1), e0146131 (2016).  https://doi.org/10.1371/journal.pone.0146131CrossRefGoogle Scholar
  25. 25.
    Festersen, P.L., Corradini, A.: Re: Mind: A mobile application for bipolar disorder patients. In: 2014 4th International Conference on Wireless Mobile Communication and Healthcare—Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), Athens, pp. 343–346 (2014).  https://doi.org/10.1109/mobihealth.2014.7015981
  26. 26.
    Kupfer, D.J.: REM latency: a psychobiologic marker for primary depressive disease. Biol. Psychiatry. 11(2), 159–174 (1976). PMID: 183839Google Scholar
  27. 27.
    Giles, D.E., Jarrett, R.B., Roffwarg, H.P., Rush, A.J.: Reduced rapid eye movement latency: a predictor of recurrence in depression. Neuropsychopharmacology 1(1), 33–39 (1987)CrossRefGoogle Scholar
  28. 28.
    Palagini, L., Baglioni, C., Ciapparelli, A., Gemignani, A., Riemann, D.: REM sleep dysregulation in depression: state of the art. Sleep Med. Rev. 17(5), 377–390 (2013). ISSN 1087-0792.  https://doi.org/10.1016/j.smrv.2012.11.001CrossRefGoogle Scholar
  29. 29.
    Chen, C.N.: Sleep, depression and antidepressants. Br. J. Psychiatry. 135(5), 385–402 (Nov 1979).  https://doi.org/10.1192/bjp.135.5.385CrossRefGoogle Scholar
  30. 30.
    Sinha, A., Chen, H., Danu, D.G., Kirubarajan, T., Farooq, M.: Estimation and decision fusion: a survey. In: IEEE International Conference on Engineering of Intelligent Systems, pp. 1–6 (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Minnesota DuluthDuluthUSA

Personalised recommendations