Skip to main content

Estimating Spatio-temporal Responses of Net Primary Productivity to Climate Change Scenarios in the Seyhan Watershed by Integrating Biogeochemical Modelling and Remote Sensing

  • Chapter
  • First Online:

Part of the book series: The Anthropocene: Politik—Economics—Society—Science ((APESS,volume 18))

Abstract

Climate change will have a significant impact on ecosystem functions, particularly in the Mediterranean. The aim of this study is to estimate responses of terrestrial net primary productivity (NPP) to four scenarios of regional climate change in the Seyhan watershed of the Eastern Mediterranean, integrating biogeochemical modelling and remote sensing. The CASA model was utilised to predict annual fluxes of regional NPP for baseline (present) (2000–2010) and future (2070–2080) climate conditions. A comprehensive data set including percentage of tree cover, land cover map, soil texture, normalised difference vegetation index, and climate variables was used to constitute the model. The multi-temporal metrics were produced using sixteen-day MODIS composites at a 250-m spatial resolution. The future climate projections were based on the following four Representative Concentration Pathways (RCPs) scenarios defined in the 5th Assessment Report of The Intergovernmental Panel on Climate Change: RCP 26, RCP 4.5, RCP 6.0 and RCP 8.5. The future NPP modelling was performed under CO2 concentrations ranging from 421 to 936 ppm and temperature increases from 1.1 to 2.6 ℃. Model results indicated that the mean regional NPP was approximately 1185 g C m−2 yr−1. Monthly NPP ranged from 10 to 260 g C m−2 for the baseline period. The total annual NPP was, on average, estimated at 3.19 Mt C yr−1 for the baseline period and 3.08 Mt C yr−1 for the future period. NPP in the Seyhan watershed appears to be sensitive to changes in temperature and precipitation. The CASA provide promising results for a better understanding and quantification of ecological and economic implications of regional impacts of climate change on biological productivity across the complex and heterogeneous watersheds of Turkey.

S. Berberoğlu, Professor, Çukurova University, Department of Landscape Architecture, Adana 01330, Turkey; e-mail: suha@cu.edu.tr.

F. Evrendilek, Professor, Abant Izzet Baysal University, Department of Environmental Engineering, Bolu, Turkey; e-mail: fevrendilek@ibu.edu.tr.

C. Dönmez, Associate Professor, Çukurova University, Department of Landscape Architecture, Adana, Turkey; e-mail: cdonmez@cu.edu.tr.

A. Çilek, Ph.D., Çukurova University, Department of Landscape Architecture, Adana, Turkey; e-mail: cilek@cu.edu.tr.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Australian Government (2014) Department of the Environment, 2014. Representative Concentration Pathways (RCPs) Fact Sheet.

    Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and Regression Trees, Chapman and Hall, New York.

    Google Scholar 

  • Dönmez C, Berberoğlu S, Curran PJ (2011) Modelling the current and future spatial distribution of net primary production in a Mediterranean watershed. International Journal of Applied Earth Observation and Geoinformation 13(3):336–345.

    Article  Google Scholar 

  • Erşahin S, Bilgili BC, Dikmen Ü, Ercanlı I (2016) Net primary productivity of Anatolian forests in relation to climate, 2000–2010. Forest Science 62(6):698–709.

    Article  Google Scholar 

  • Evrendilek F (2014) Modeling net ecosystem CO2 exchange using temporal neural networks after wavelet denoising. Geographical Analysis 46:37–52.

    Article  Google Scholar 

  • Gobron N, Pinty B, Verstraete MM, Widlowski JL (2000) Advanced vegetation indices optimised for up-coming sensors: Design, performance, and applications. IEEE Transactions on Geoscience and Remote Sensing 38(6):2489–2505.

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965–1978.

    Article  Google Scholar 

  • Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Global Change Biology 11:945–958.

    Article  Google Scholar 

  • Knyazikhin Y, Martonchik JV, Myneni RB, Diner DJ, Running SW (1998) Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. Journal of Geophysical Research 103:32257–32276.

    Article  Google Scholar 

  • Loh WY (2002) Regression trees with unbiased variable selection and interaction detection. Statistica Sinica 12:361–386.

    Google Scholar 

  • Morales P, Hickler T, Rowell DP, Smith B, Sykes MT (2007) Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Global Change Biology 13:108–122.

    Article  Google Scholar 

  • NASA (2013) Land processes distributed archive center web site, 2013; at: https://lpdaac.usgs.gov.

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles 7:81–841.

    Article  Google Scholar 

  • Potter C, Klooster S, Steinbach M, Tan P, Kumar V, Shekhar S, Nemani R, Myneni R (2003) Global teleconnections of climate to terrestrial carbon flux. Journal of Geophysical Research-Atmospheres. https://doi.org/10.1029/2002JD002979.

  • Potter CS, Klooster S, Steinbach M, Tan P, Sheikarand S, Carvalho C (2004) Understanding global teleconnections of climate to regional model 13 estimates of Amazon ecosystem carbon fluxes. Global Change Biology 10:693–14 703.

    Article  Google Scholar 

  • Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modeling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space. Global Ecology Biogeography 10:621–637.

    Article  Google Scholar 

  • Tang G, Beckage B, Smith B, Miller PA (2010) Estimating potential forest NPP, biomass and their climatic sensitivity in New England using a dynamic ecosystem model. Ecosphere 1(6):1–20.

    Article  Google Scholar 

  • Tottrup C, Rasmussen MS, Eklundh L, Jönsson P (2007) Mapping fractional forest cover across the highlands of mainland Southeast Asia using MODIS data and regression tree modelling. International Journal of Remote Sensing 28(1):23–46.

    Article  Google Scholar 

  • Wang F, Xu YJ, Dean TJ (2011) Projecting climate change effects on forest net primary productivity in subtropical Louisiana, USA. AMBIO 40:506–520. https://doi.org/10.1007/s13280-011-0135-7.

    Article  Google Scholar 

  • Wang L, Gong W, Ma Y, Zhang M (2013) Modeling regional vegetation NPP variations and their relationships with climatic parameters in Wuhan, China. Earth Interactions 17(4):20.

    Article  Google Scholar 

  • WorldClim Climate Layers Web Page (2013); at: http://www.worldclim.org.

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the research project grants (project no: 110Y338) from the Scientific and Technological Research Council (TÜBITAK) of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süha Berberoğlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berberoğlu, S., Evrendilek, F., Dönmez, C., Çilek, A. (2019). Estimating Spatio-temporal Responses of Net Primary Productivity to Climate Change Scenarios in the Seyhan Watershed by Integrating Biogeochemical Modelling and Remote Sensing. In: Watanabe, T., Kapur, S., Aydın, M., Kanber, R., Akça, E. (eds) Climate Change Impacts on Basin Agro-ecosystems. The Anthropocene: Politik—Economics—Society—Science, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-01036-2_9

Download citation

Publish with us

Policies and ethics