Skip to main content

Biodiesel Purification and Upgrading Technologies

  • Chapter
  • First Online:
Biodiesel

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 8))

Abstract

Biodiesel purification is a crucial process in meeting fuel grade standard specifications. Inadequate purification results in a low-quality fuel and hampers engine performance. Conventional wet and dry washing along with membrane refining technologies are the most discussed methods in the literature for biodiesel purification. The conventional wet washing is performed using organic solvents, deionized water, or an acid solution. However, these methods result in a large quantity of wastewater, which creates a significant cost for wastewater treatment besides environmental impacts. Dry washing techniques were introduced to address this deficiency. In these methods, an appropriate adsorbent media such as Magnesol, an ion exchange resin, or active carbon is utilized to remove the impurities. The challenges associated with wet and dry techniques motivated scientists to seek more innovative techniques. Regarding biodiesel purification, organic and ceramic membrane technologies have received increasing attention. Biodiesel upgrading is an alternative route for producing diesel-like fuels with properties that can exceed conventional petroleum diesel. Since oxygenated moieties of biodiesel are the main reason for its poor fuel properties (e.g., high viscosity, low energy density, low chemical stability, and poor cold flow behavior), most of these upgrading techniques have focused on deoxygenation pathways. Hydrodeoxygenation using various catalytic systems have also been studied extensively to produce renewable diesel with high yields and high carbon efficiency. This chapter presents the basics and applied aspects of biodiesel purification and upgrading along with an overview on different techniques, challenges, and the overall trend of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASTM D6751 (2015) Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. ASTM International, West Conshohocken, PA

    Google Scholar 

  • EN 14214 (2008) Automotive fuels—fatty acid methyl esters (fame) for diesel engines—requirements and test methods. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  • Abbaszadeh A, Ghobadian B, Najafi G, Yusaf T (2014) An experimental investigation of the effective parameters on wet washing of biodiesel purification. Int J Autom Mech Eng 9:1525–1537

    Article  Google Scholar 

  • Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E (2007) Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem 9:868–872

    Article  Google Scholar 

  • Alba-Rubio A, Castillo MA, Albuquerque M, Mariscal R, Cavalcante C, Granados ML (2012) A new and efficient procedure for removing calcium soaps in biodiesel obtained using CaO as a heterogeneous catalyst. Fuel 95:464–470

    Article  Google Scholar 

  • Alicieo T, Mendes E, Pereira N, Lima OM (2002) Membrane ultrafiltration of crude soybean oil. Desalination 148:99–102

    Article  Google Scholar 

  • Alves MJ, Nascimento SM, Pereira IG, Martins MI, Cardoso VL, Reis M (2013) Biodiesel purification using micro and ultrafiltration membranes. Renew Energy 58:15–20

    Article  Google Scholar 

  • Ardiyanti A, Gutierrez A, Honkela M, Krause A, Heeres H (2011) Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono-and bimetallic (Pt, Pd, Rh) catalysts. Appl Catal A 407:56–66

    Article  Google Scholar 

  • Armor J (1998) Applications of catalytic inorganic membrane reactors to refinery products. J Membr Sci 147:217–233

    Article  Google Scholar 

  • Aslam M, Kothiyal N, Sarma A (2015) True boiling point distillation and product quality assessment of biocrude obtained from Mesua ferrea L. seed oil via hydroprocessing. Clean Technol Environ Policy 17:175–185

    Article  Google Scholar 

  • Atadashi I (2015) Purification of crude biodiesel using dry washing and membrane technologies. Alexandria Engineering Journal 54:1265–1272

    Article  Google Scholar 

  • Atadashi I, Aroua M, Aziz AA (2011a) Biodiesel separation and purification: a review. Renew Energy 36:437–443

    Article  Google Scholar 

  • Atadashi I, Aroua M, Aziz AA, Sulaiman N (2011b) Membrane biodiesel production and refining technology: a critical review. Renew Sustain Energy Rev 15:5051–5062

    Article  Google Scholar 

  • Atadashi I, Aroua M, Aziz AA, Sulaiman N (2011c) Refining technologies for the purification of crude biodiesel. Appl Energy 88:4239–4251

    Article  Google Scholar 

  • Atadashi I, Aroua M, Aziz AA, Sulaiman N (2012) High quality biodiesel obtained through membrane technology. J Membr Sci 421:154–164

    Article  Google Scholar 

  • Badawi M, Paul J, Cristol S, Payen E, Romero Y, Richard F, Brunet S, Lambert D, Portier X, Popov A (2011) Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: a combined experimental and DFT study. J Catal 282:155–164

    Article  Google Scholar 

  • Baroutian S, Aroua MK, Raman AAA, Sulaiman NM (2011) A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Biores Technol 102:1095–1102

    Article  Google Scholar 

  • Barredo-Damas S, Alcaina-Miranda M, Bes-Piá A, Iborra-Clar M, Iborra-Clar A, Mendoza-Roca J (2010) Ceramic membrane behavior in textile wastewater ultrafiltration. Desalination 250:623–628

    Article  Google Scholar 

  • Basso RC, Viotto LA, Gonçalves LAG (2006) Cleaning process in ceramic membrane used for the ultrafiltration of crude soybean oil. Desalination 200:85–86

    Article  Google Scholar 

  • Bateni H, Bateni F, Karimi K (2016) Effects of oil extraction on ethanol and biogas production from Eruca sativa seed cake. In: Waste and biomass valorization. https://doi.org/10.1007/s12649-016-9731-x

    Article  Google Scholar 

  • Bateni H, Karimi K (2016a) Biodiesel production from castor plant integrating ethanol production via a biorefinery approach. Chem Eng Res Des 107:4–12

    Article  Google Scholar 

  • Bateni H, Karimi K (2016b) Biorefining of Eruca sativa plant for efficient biofuel production. RSC Adv 6:34492–34500

    Article  Google Scholar 

  • Bateni H, Karimi K, Zamani A, Benakashani F (2014) Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective. Appl Energy 136:14–22

    Article  Google Scholar 

  • Bateni H, Saraeian A, Able C (2017) A comprehensive review on biodiesel purification and upgrading. Biofuel Res J 15:559–612. https://doi.org/10.18331/BRJ2017.4.3.4

    Article  Google Scholar 

  • Bernas H, Eränen K, Simakova I, Leino A-R, Kordás K, Myllyoja J, Mäki-Arvela P, Salmi T, Murzin DY (2010) Deoxygenation of dodecanoic acid under inert atmosphere. Fuel 89:2033–2039

    Article  Google Scholar 

  • Berrios M, Siles J, Martín M, Martín A (2013) Ion exchange. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United Kingdom

    Chapter  Google Scholar 

  • Berrios M, Skelton R (2008) Comparison of purification methods for biodiesel. Chem Eng J 144:459–465

    Article  Google Scholar 

  • Bezergianni S, Dimitriadis A, Kalogianni A, Pilavachi PA (2010a) Hydrotreating of waste cooking oil for biodiesel production. Part I: Effect of temperature on product yields and heteroatom removal. Biores Technol 101:6651–6656

    Article  Google Scholar 

  • Bezergianni S, Dimitriadis A, Sfetsas T, Kalogianni A (2010b) Hydrotreating of waste cooking oil for biodiesel production. Part II: Effect of temperature on hydrocarbon composition. Biores Technol 101:7658–7660

    Article  Google Scholar 

  • Bhayani BV, Ramarao BV (2013) Filtration-based separations in the biorefinery. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United Kingdom

    Chapter  Google Scholar 

  • Boda L, Onyestyák G, Solt H, Lónyi F, Valyon J, Thernesz A (2010) Catalytic hydroconversion of tricaprylin and caprylic acid as model reaction for biofuel production from triglycerides. Appl Catal A 374:158–169

    Article  Google Scholar 

  • Canakci M, van Gerpen J (2003) A pilot plant to produce biodiesel from high free fatty acid feedstocks. Trans ASAE 46:945–954

    Google Scholar 

  • Cao P, Dubé MA, Tremblay AY (2008a) High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor. Biomass Bioenerg 32:1028–1036

    Article  Google Scholar 

  • Cao P, Dubé MA, Tremblay AY (2008b) Methanol recycling in the production of biodiesel in a membrane reactor. Fuel 87:825–833

    Article  Google Scholar 

  • Cao P, Tremblay AY, Dubé MA, Morse K (2007) Effect of membrane pore size on the performance of a membrane reactor for biodiesel production. Ind Eng Chem Res 46:52–58

    Article  Google Scholar 

  • Chen B, Wang W, Liu X, Xue W, Ma X, Chen G, Yu Q, Li R (2012a) Adsorption study of glycerol in biodiesel on the sulfonated adsorbent. Ind Eng Chem Res 51:12933–12939

    Article  Google Scholar 

  • Chen B, Wang W, Ma X, Wang C, Li R (2012b) Adsorption behaviors of glycerol from biodiesel on sulfonated polystyrene-divinylbenzene resins in different forms. Energy Fuels 26:7060–7067

    Article  Google Scholar 

  • Chen J, Yang Y, Shi H, Li M, Chu Y, Pan Z, Yu X (2014) Regulating product distribution in deoxygenation of methyl laurate on silica-supported Ni–Mo phosphides: Effect of Ni/Mo ratio. Fuel 129:1–10

    Article  Google Scholar 

  • Cheng L-H, Cheng Y-F, Yen S-Y, Chen J (2009) Ultrafiltration of triglyceride from biodiesel using the phase diagram of oil–FAME–MeOH. J Membr Sci 330:156–165

    Article  Google Scholar 

  • Chhetri AB, Watts KC, Islam MR (2008) Waste cooking oil as an alternate feedstock for biodiesel production. Energies 1:3–18

    Article  Google Scholar 

  • Choudhary T, Phillips C (2011) Renewable fuels via catalytic hydrodeoxygenation. Appl Catal A 397:1–12

    Article  Google Scholar 

  • Coêlho DG, Almeida AP, Soletti JI, de Carvalho SH (2011) Influence of variables in the purification process of castor oil biodiesel. Chem Eng Trans 24:829–834

    Google Scholar 

  • Coumans A, Hensen E (2017) A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide. Appl Catal B 201:290–301

    Article  Google Scholar 

  • da Silva NDL, Santander CMG, Batistella CB, Maciel Filho R, Maciel MRW (2010) Biodiesel production from integration between reaction and separation system: reactive distillation process. Appl Biochem Biotechnol 161:245–254

    Article  Google Scholar 

  • Dechow FJ (1989) Separation and purification techniques in biotechnology. Noyes Publications, Park Ridge, United States

    Google Scholar 

  • Demirbas A (2008) Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers Manag 49:125–130

    Article  Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50:14–34

    Article  Google Scholar 

  • Deroussel P, Khakhar D, Ottino J (2001) Mixing of viscous immiscible liquids. Part 2: Overemulsification—interpretation and use. Chem Eng Sci 56:5531–5537

    Article  Google Scholar 

  • Dias J, Santos E, Santo F, Carvalho F, Alvim-Ferraz M, Almeida M (2014) Study of an ethylic biodiesel integrated process: raw-materials, reaction optimization and purification methods. Fuel Process Technol 124:198–205

    Article  Google Scholar 

  • Dimian AC, Bildea CS, Omota F, Kiss AA (2009) Innovative process for fatty acid esters by dual reactive distillation. Comput Chem Eng 33:743–750

    Article  Google Scholar 

  • Do PT, Chiappero M, Lobban LL, Resasco DE (2009) Catalytic deoxygenation of methyl-octanoate and methyl-stearate on Pt/Al2O3. Catal Lett 130:9–18

    Article  Google Scholar 

  • Dubé M, Tremblay A, Liu J (2007) Biodiesel production using a membrane reactor. Biores Technol 98:639–647

    Article  Google Scholar 

  • Dugan J (2007) A dry wash approach to biodiesel purification. http://www.biodieselmagazine.com/article.jsp?article_id=1918. Assessed 15 Mar 2017

  • Dumay J, Radier S, Barnathan G, Berge J-P, Jaouen P (2008) Recovery of valuable soluble compounds from washing waters generated during small fatty pelagic surimi processing by membrane processes. Environ Technol 29:451–461

    Article  Google Scholar 

  • Dupain X, Costa DJ, Schaverien CJ, Makkee M, Moulijn JA (2007) Cracking of a rapeseed vegetable oil under realistic FCC conditions. Appl Catal B 72:44–61

    Article  Google Scholar 

  • Erich K (1982) Separating processes. In: Erich K (ed) Handbook of laboratory distillation with an introduction to pilot plant distillation. Elsevier, New York, United States

    Google Scholar 

  • Escobar JC, Lora ES, Venturini OJ, Yáñez EE, Castillo EF, Almazan O (2009) Biofuels: environment, technology and food security. Renew Sustain Energy Rev 13:1275–1287

    Article  Google Scholar 

  • Faccini CS, Cunha MED, Moraes MSA, Krause LC, Manique MC, Rodrigues MRA, Benvenutti EV, Caramão EB (2011) Dry washing in biodiesel purification: a comparative study of adsorbents. J Braz Chem Soc 22:558–563

    Article  Google Scholar 

  • Fadhil A, Dheyab M (2015) Purification of biodiesel fuels produced from spent frying oils over activated carbons. Energy Sources Part A: Recovery Util Environ Eff 37:149–155

    Article  Google Scholar 

  • Falahati H, Tremblay A (2012) The effect of flux and residence time in the production of biodiesel from various feedstocks using a membrane reactor. Fuel 91:126–133

    Article  Google Scholar 

  • Ferrero G, Almeida M, Alvim-Ferraz M, Dias J (2014) Water-free process for eco-friendly purification of biodiesel obtained using a heterogeneous Ca-based catalyst. Fuel Process Technol 121:114–118

    Article  Google Scholar 

  • Foraita S, Liu Y, Haller GL, Baráth E, Zhao C, Lercher JA (2017) Controlling hydrodeoxygenation of stearic acid to n-heptadecane and n-octadecane by adjusting the chemical properties of Ni/SiO2–ZrO2 catalyst. ChemCatChem 9:195–203

    Article  Google Scholar 

  • Freeman BD, Paul DR, Czenkusch K, Ribeiro CP, Ba C (2012) Thermally Rearranged (TR) polymers as membranes for ethanol dehydration

    Google Scholar 

  • Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A 199:147–190

    Article  Google Scholar 

  • Furimsky E, Massoth FE (1999) Deactivation of hydroprocessing catalysts. Catal Today 52:381–495

    Article  Google Scholar 

  • Giorno F, Mazzei R, Giorno L (2013) Purification of triacylglycerols for biodiesel production from Nannochloropsis microalgae by membrane technology. Biores Technol 140:172–178

    Article  Google Scholar 

  • Gomes MCS, Arroyo PA, Pereira NC (2011) Biodiesel production from degummed soybean oil and glycerol removal using ceramic membrane. J Membr Sci 378:453–461

    Article  Google Scholar 

  • Gomes MCS, Arroyo PA, Pereira NC (2013) Influence of acidified water addition on the biodiesel and glycerol separation through membrane technology. J Membr Sci 431:28–36

    Article  Google Scholar 

  • Gomes MCS, Pereira NC, de Barros STD (2010) Separation of biodiesel and glycerol using ceramic membranes. J Membr Sci 352:271–276

    Article  Google Scholar 

  • Gomes MG, Santos DQ, de Morais LC, Pasquini D (2015) Purification of biodiesel by dry washing, employing starch and cellulose as natural adsorbents. Fuel 155:1–6

    Article  Google Scholar 

  • Gomez-Castro FI, Rico-Ramirez V, Segovia-Hernandez JG, Hernandez S (2010) Feasibility study of a thermally coupled reactive distillation process for biodiesel production. Chem Eng Process 49:262–269

    Article  Google Scholar 

  • Gong S, Shinozaki A, Shi M, Qian EW (2012) Hydrotreating of jatropha oil over alumina based catalysts. Energy Fuels 26:2394–2399

    Article  Google Scholar 

  • Gosselink RW, Hollak SA, Chang SW, van Haveren J, de Jong KP, Bitter JH, van Es DS (2013a) Reaction pathways for the deoxygenation of vegetable oils and related model compounds. Chemsuschem 6:1576–1594

    Article  Google Scholar 

  • Gosselink RW, Stellwagen DR, Bitter JH (2013b) Tungsten-based catalysts for selective deoxygenation. Angew Chem 125:5193–5196

    Article  Google Scholar 

  • Grandison AS (1996) Ion-exchange and electrodialysis. In: Grandison AS, Lewis MJ (eds) Separation processes in the food and biotechnology industries. Woodhead Publishing, Cambridge, United Kingdom

    Chapter  Google Scholar 

  • Greenwell H, Laurens L, Shields R, Lovitt R, Flynn K (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    Article  Google Scholar 

  • Groeneweg F, Agterof W, Jaeger P, Janssen J, Wieringa J, Klahn J (1998) On the mechanism of the inversion of emulsions. Chem Eng Res Des 76:55–63

    Article  Google Scholar 

  • Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecules 15:2405–2426

    Article  Google Scholar 

  • Han J, Duan J, Chen P, Lou H, Zheng X (2011a) Molybdenum carbide-catalyzed conversion of renewable oils into diesel-like hydrocarbons. Adv Synth Catal 353:2577–2583

    Article  Google Scholar 

  • Han J, Duan J, Chen P, Lou H, Zheng X, Hong H (2011b) Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils. Green Chem 13:2561–2568

    Article  Google Scholar 

  • Han J, Duan J, Chen P, Lou H, Zheng X, Hong H (2012) Carbon-supported molybdenum carbide catalysts for the conversion of vegetable oils. Chemsuschem 5:727–733

    Article  Google Scholar 

  • Hanafi SA, Mohamed MS (2011) Recent trends in the cleaning of diesel fuels via desulfurization processes. Energy Sources Part A: Recovery Util Environ Eff 33:495–511

    Article  Google Scholar 

  • Hanson C (1971) Solvent extraction: the current position. In: Hanson C (ed) Recent advances in liquid–liquid extraction. Pergamon Press, Oxford, United Kingdom

    Google Scholar 

  • Hao JH, Chen C, Li L, Yu L, Jiang W (2000) Preparation of solvent-resistant anion-exchange membranes. Desalination 129:15–22

    Article  Google Scholar 

  • Hayyan M, Mjalli FS, Hashim MA, Alnashef IM (2010) A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Process Technol 91:116–120

    Article  Google Scholar 

  • He H, Guo X, Zhu S (2006) Comparison of membrane extraction with traditional extraction methods for biodiesel production. J Am Oil Chem Soc 83:457–460

    Article  Google Scholar 

  • Ho RM, Wu CH, Su AC (1990) Morphology of plastic/rubber blends. Polym Eng Sci 30:511–518

    Article  Google Scholar 

  • Hollak SA, Gosselink RW, van Es DS, Bitter JH (2013) Comparison of tungsten and molybdenum carbide catalysts for the hydrodeoxygenation of oleic acid. ACS Catal 3:2837–2844

    Article  Google Scholar 

  • Hua F, Tsang Y, Wang Y, Chan S, Chua H, Sin S (2007) Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chem Eng J 128:169–175

    Article  Google Scholar 

  • Huang H-J, Ramaswamy S (2013) Overview of biomass conversion processes and separation and purification technologies in biorefineries. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United Kingdom

    Google Scholar 

  • Huerga IR, Zanuttini MS, Gross MS, Querini CA (2014) Biodiesel production from Jatropha curcas: Integrated process optimization. Energy Convers Manag 80:1–9

    Article  Google Scholar 

  • Immer JG, Kelly MJ, Lamb HH (2010) Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Appl Catal A 375:134–139

    Article  Google Scholar 

  • Itthibenchapong V, Srifa A, Kaewmeesri R, Kidkhunthod P, Faungnawakij K (2017) Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS2/γ-Al2O3 catalysts. Energy Convers Manag 134:188–196

    Article  Google Scholar 

  • Jaber R, Shirazi M, Toufaily J, Hamieh A, Noureddin A, Ghanavati H, Ghaffari A, Zenouzi A, Karout A, Ismail A (2015) Biodiesel wash-water reuse using microfiltration: toward zero-discharge strategy for cleaner and economized biodiesel production. Biofuel Res J 2:148–151

    Article  Google Scholar 

  • Jiang LY, Wang Y, Chung T-S, Qiao XY, Lai J-Y (2009) Polyimides membranes for pervaporation and biofuels separation. Prog Polym Sci 34:1135–1160

    Article  Google Scholar 

  • Jönsson A-S (2013) Microfiltration, ultrafiltration and diafiltration. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United Kingdom

    Chapter  Google Scholar 

  • Kandel K, Anderegg JW, Nelson NC, Chaudhary U, Slowing II (2014) Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel. J Catal 314:142–148

    Article  Google Scholar 

  • Karaosmanoǧlu F, Cıǧızoǧlu KB, Tüter M, Ertekin S (1996) Investigation of the refining step of biodiesel production. Energy Fuels 10:890–895

    Article  Google Scholar 

  • Kertes AS (1971) The chemistry of solvent extraction. In: Hanson C (ed) Recent advances in liquid–liquid extraction. Pergamon Press, Oxford, United Kingdom

    Chapter  Google Scholar 

  • Kiatkittipong W, Phimsen S, Kiatkittipong K, Wongsakulphasatch S, Laosiripojana N, Assabumrungrat S (2013) Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil. Fuel Process Technol 116:16–26

    Article  Google Scholar 

  • Kim H-J, Kang B-S, Kim M-J, Park YM, Kim D-K, Lee J-S, Lee K-Y (2004) Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal Today 93:315–320

    Article  Google Scholar 

  • Kiss AA (2010) Separative reactors for integrated production of bioethanol and biodiesel. Comput Chem Eng 34:812–820

    Article  Google Scholar 

  • Kiss AA (2013) Advanced distillation technologies: design, control and applications. Wiley, Chichester, United Kingdom

    Book  Google Scholar 

  • Kiss AA, Dimian AC, Rothenberg G (2006a) Solid acid catalysts for biodiesel production—towards sustainable energy. Adv Synth Catal 348:75–81

    Article  Google Scholar 

  • Kiss AA, Omota F, Dimian AC, Rothenberg G (2006b) The heterogeneous advantage: biodiesel by catalytic reactive distillation. Top Catal 40:141–150

    Article  Google Scholar 

  • Kiss AA, Dimian AC, Rothenberg G (2007) Biodiesel by catalytic reactive distillation powered by metal oxides. Energy Fuels 22:598–604

    Article  Google Scholar 

  • Knothe G (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36:364–373

    Article  Google Scholar 

  • Kolah AK, Lira CT, Miller DJ (2013) Reactive distillation for the biorefinery. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United Kingdom

    Chapter  Google Scholar 

  • Kubička D, Horáček J (2011) Deactivation of HDS catalysts in deoxygenation of vegetable oils. Appl Catal A 394:9–17

    Article  Google Scholar 

  • Kubička D, Kaluža L (2010) Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal A 372:199–208

    Article  Google Scholar 

  • Kubičková I, Snåre M, Eränen K, Mäki-Arvela P, Murzin DY (2005) Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catal Today 106:197–200

    Article  Google Scholar 

  • Lam E, Luong JH (2014) Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal 4:3393–3410

    Article  Google Scholar 

  • Laurent E, Delmon B (1994) Influence of water in the deactivation of a sulfided NiMo γ-Al2O3 catalyst during hydrodeoxygenation. J Catal 146:281288–285291

    Article  Google Scholar 

  • Leeruang U, Pengprecha S (2012) Purification of biodiesel by adsorption with activated low silica bentonite. In: International conference on chemical processes and environmental issues, Singapore

    Google Scholar 

  • Lei Z, Chen B, Ding Z (2005) Special distillation processes. Elsevier, Amsterdam, Netherlands

    Google Scholar 

  • Lestari S, Maki-Arvela P, Bernas H, Simakova O, Sjöholm R, Beltramini J, Lu GM, Myllyoja J, Simakova I, Murzin DY (2009a) Catalytic deoxygenation of stearic acid in a continuous reactor over a mesoporous carbon-supported Pd catalyst. Energy Fuels 23:3842–3845

    Article  Google Scholar 

  • Lestari S, Mäki-Arvela P, Simakova I, Beltramini J, Lu GM, Murzin DY (2009b) Catalytic deoxygenation of stearic acid and palmitic acid in semibatch mode. Catal Lett 130:48–51

    Article  Google Scholar 

  • Lestari S, Mäki-Arvela P, Eränen K, Beltramini J, Lu GM, Murzin DY (2010) Diesel-like hydrocarbons from catalytic deoxygenation of stearic acid over supported Pd nanoparticles on SBA-15 catalysts. Catal Lett 134:250–257

    Article  Google Scholar 

  • Lestari S, Mäki-Arvela P, Beltramini J, Lu G, Murzin DY (2009c) Transforming triglycerides and fatty acids into biofuels. Chemsuschem 2:1109–1119

    Article  Google Scholar 

  • Lestari S, Simakova I, Tokarev A, Mäki-Arvela P, Eränen K, Murzin DY (2008) Synthesis of biodiesel via deoxygenation of stearic acid over supported Pd/C catalyst. Catal Lett 122:247–251

    Article  Google Scholar 

  • Levan MD, Carta G (2008) Section 16. Adsorption and ion exchange. In: Green DW, Perry RH (eds) Perry’s chemical engineers’ handbook, 8th edn. McGraw-Hill, New York, United States

    Google Scholar 

  • Lewis MJ (1996) Solids separation processes. In: Separation processes in the food and biotechnology industries. Woodhead Publishing, Cambridge, United Kingdom

    Chapter  Google Scholar 

  • Li L, Wang Y (2005) Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells. J Membr Sci 262:1–4

    Article  Google Scholar 

  • Li M, Zhang H, Shao Z-G (2006) Quaternized poly (phthalazinone ether sulfone ketone) membrane doped with H3PO4 for high-temperature PEMFC operation. Electrochem Solid-State Lett 9:A60–A63

    Article  Google Scholar 

  • Liu Y, Sotelo-Boyás R, Murata K, Minowa T, Sakanishi K (2011) Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni–Mo and solid acids. Energy Fuels 25:4675–4685

    Article  Google Scholar 

  • Ma F, Clements LD, Hanna MA (1998) Biodiesel fuel from animal fat. Ancillary studies on transesterification of beef tallow. Ind Eng Chem Res 37:3768–3771

    Article  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresource Technol 70:1–15

    Article  Google Scholar 

  • Machado GD, Aranda DA, Castier M, Cabral VF, Cardozo-Filho LC (2011) Computer simulation of fatty acid esterification in reactive distillation columns. Ind Eng Chem Res 50:10176–10184

    Article  Google Scholar 

  • Madsen AT, Christensen CH, Fehrmann R, Riisager A (2011) Hydrodeoxygenation of waste fat for diesel production: Study on model feed with Pt/alumina catalyst. Fuel 90:3433–3438

    Article  Google Scholar 

  • Mah S-K, Leo C, Wu TY, Chai S-P (2012) A feasibility investigation on ultrafiltration of palm oil and oleic acid removal from glycerin solutions: flux decline, fouling pattern, rejection and membrane characterizations. J Membr Sci 389:245–256

    Article  Google Scholar 

  • Mäki-Arvela P, Kubickova I, Snåre M, Eränen K, Murzin DY (2007) Catalytic deoxygenation of fatty acids and their derivatives. Energy Fuels 21:30–41

    Article  Google Scholar 

  • Mäki-Arvela P, Snåre M, Eränen K, Myllyoja J, Murzin DY (2008) Continuous decarboxylation of lauric acid over Pd/C catalyst. Fuel 87:3543–3549

    Article  Google Scholar 

  • Manesiotis P, Theodoridis G (2016) Affinity-based separations in bioanalysis. J Chromatogr B 1021:1–2

    Article  Google Scholar 

  • Manique MC, Faccini CS, Onorevoli B, Benvenutti EV, Caramão EB (2012) Rice husk ash as an adsorbent for purifying biodiesel from waste frying oil. Fuel 92:56–61

    Article  Google Scholar 

  • Mänttäri M, van der Bruggen B, Nyström M (2013) Nanofiltration. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United Kingdom

    Chapter  Google Scholar 

  • Manuale D, Mazzieri V, Torres G, Vera C, Yori J (2011) Non-catalytic biodiesel process with adsorption-based refining. Fuel 90:1188–1196

    Article  Google Scholar 

  • Mata TM, Cardoso N, Ornelas M, Neves S, Caetano NS (2011) Evaluation of two purification methods of biodiesel from beef tallow, pork lard, and chicken fat. Energy Fuels 25:4756–4762

    Article  Google Scholar 

  • Mazzieri V, Vera C, Yori J (2008) Adsorptive properties of silica gel for biodiesel refining. Energy Fuels 22:4281–4284

    Article  Google Scholar 

  • Miga K, Stanczyk K, Sayag C, Brodzki D, Djéga-Mariadassou G (1999) Bifunctional behavior of bulk MoOxNy and nitrided supported NiMo catalyst in hydrodenitrogenation of indole. J Catal 183:63–68

    Article  Google Scholar 

  • Monnier J, Sulimma H, Dalai A, Caravaggio G (2010) Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Appl Catal A: General 382:176–180

    Article  Google Scholar 

  • Morgan T, Santillan-Jimenez E, Harman-Ware AE, Ji Y, Grubb D, Crocker M (2012) Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts. Chem Eng J 189:346–355

    Article  Google Scholar 

  • Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen K, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A: General 407:1–19

    Article  Google Scholar 

  • Moser BR (2012) Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel. Fuel 92:231–238

    Article  Google Scholar 

  • Mueanmas C, Prasertsit K, Tongurai C (2010) Transesterification of triolein with methanol in reactive distillation column: simulation studies. Int J Chem React Eng 8

    Google Scholar 

  • Muniyappa PR, Brammer SC, Noureddini H (1996) Improved conversion of plant oils and animal fats into biodiesel and co-product. Bioresource Technol 56:19–24

    Article  Google Scholar 

  • Nagy G, Pölczmann G, Kalló D, Hancsók J (2009) Investigation of hydrodearomatization of gas oils on noble metal/support catalysts. Chem Eng J 154:307–314

    Article  Google Scholar 

  • Nava R, Pawelec B, Castaño P, Álvarez-Galván M, Loricera C, Fierro J (2009) Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Appl Catal B: Environ 92:154–167

    Article  Google Scholar 

  • Neylon M, Choi S, Kwon H, Curry K, Thompson L (1999) Catalytic properties of early transition metal nitrides and carbides: n-butane hydrogenolysis, dehydrogenation and isomerization. Appl Catal A: General 183:253–263

    Article  Google Scholar 

  • Noori MS, Karimi K (2016a) Chemical and structural analysis of alkali pretreated pinewood for efficient ethanol production. RSC Adv 6:65683–65690

    Article  Google Scholar 

  • Noori MS, Karimi K (2016b) Detailed study of efficient ethanol production from elmwood by alkali pretreatment. Biochem Eng J 105:197–204

    Article  Google Scholar 

  • Parkash S (2003) Refining processes handbook. Gulf Professional Publishing, Burlington, United States

    Google Scholar 

  • Parvizsedghy R, Sadrameli SM, Towfighi Darian J (2015) Upgraded biofuel diesel production by thermal cracking of castor biodiesel. Energy Fuels 30:326–333

    Article  Google Scholar 

  • Pérez-Cisneros ES, Mena-Espino X, Rodríguez-López V, Sales-Cruz M, Viveros-García T, Lobo-Oehmichen R (2016) An integrated reactive distillation process for biodiesel production. Comput Chem Eng 91:233–246

    Article  Google Scholar 

  • Peroni M, Mancino G, Baráth E, Gutiérrez OY, Lercher JA (2016) Bulk and γ-Al2O3-supported Ni2P and MoP for hydrodeoxygenation of palmitic acid. Appl Catal B: Environ 180:301–311

    Article  Google Scholar 

  • Phimsen S, Kiatkittipong W, Yamada H, Tagawa T, Kiatkittipong K, Laosiripojana N, Assabumrungrat S (2016) Oil extracted from spent coffee grounds for bio-hydrotreated diesel production. Energy Convers Manag 126:1028–1036

    Article  Google Scholar 

  • Pittia P, Mastrocola D, Nicoli M (2005) Effect of colloidal properties of oil-in-water emulsions on ethanol liquid–vapour partition. Food Res Int 38:585–595

    Article  Google Scholar 

  • Poddar T, Jagannath A, Almansoori A (2015) Biodiesel production using reactive distillation: a comparative simulation study. Energy Procedia 75:17–22

    Article  Google Scholar 

  • Predojević ZJ (2008) The production of biodiesel from waste frying oils: a comparison of different purification steps. Fuel 87:3522–3528

    Article  Google Scholar 

  • Qin Y, Chen P, Duan J, Han J, Lou H, Zheng X, Hong H (2013) Carbon nanofibers supported molybdenum carbide catalysts for hydrodeoxygenation of vegetable oils. RSC Adv 3:17485–17491

    Article  Google Scholar 

  • Qiu Z, Zhao L, Weatherley L (2010) Process intensification technologies in continuous biodiesel production. Chem Eng Process: Process Intensif 49:323–330

    Article  Google Scholar 

  • Rahayu SS, Mindaryani A (2007) Optimization of biodiesel washing by water extraction. In: Proceedings of the world congress on engineering and computer science, San Francisco, United States

    Google Scholar 

  • Rantanen L, Linnaila R, Aakko P, Harju T (2005) NExBTL-biodiesel fuel of the second generation. SAE technical paper

    Google Scholar 

  • Rodríguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159–175

    Article  Google Scholar 

  • Rogers KA, Zheng Y (2016) Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: a review and new insights. Chemsuschem 9:1750–1772

    Article  Google Scholar 

  • Romero Y, Richard F, Brunet S (2010) Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: promoting effect and reaction mechanism. Appl Catal B: Environ 98:213–223

    Article  Google Scholar 

  • Rossi N, Derouiniot-Chaplain M, Jaouen P, Legentilhomme P, Petit I (2008) Arthrospira platensis harvesting with membranes: fouling phenomenon with limiting and critical flux. Bioresource Technol 99:6162–6167

    Article  Google Scholar 

  • Rossi N, Jaouen P, Legentilhomme P, Petit I (2004) Harvesting of cyanobacterium Arthrospira platensis using organic filtration membranes. Food Bioprod Process 82:244–250

    Article  Google Scholar 

  • Rostrup-Nielsen JR (2008) 13.11 steam reforming. In: Ertl G, Knozinger H, Schuth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  • Rozmysłowicz B, Maki-Arvela P, Tokarev A, Leino A-R, Eränen K, Murzin DY (2012) Influence of hydrogen in catalytic deoxygenation of fatty acids and their derivatives over Pd/C. Ind Eng Chem Res 51:8922–8927

    Article  Google Scholar 

  • Ruddy DA, Schaidle JA, Ferrell III, JR, Wang J, Moens L, Hensley JE (2014) Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem 16:454–490

    Article  Google Scholar 

  • Russbueldt BM, Hoelderich WF (2009) New sulfonic acid ion-exchange resins for the preesterification of different oils and fats with high content of free fatty acids. Appl Catal A: General 362:47–57

    Article  Google Scholar 

  • Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York, United States

    Google Scholar 

  • Saifuddin N, Chua K (2004) Production of ethyl ester (biodiesel) from used frying oil: optimization of transesterification process using microwave irradiation. Malays J Chem 6:77–82

    Google Scholar 

  • Salahi A, Gheshlaghi A, Mohammadi T, Madaeni SS (2010) Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater. Desalination 262:235–242

    Article  Google Scholar 

  • Saleh J, Dubé MA, Tremblay AY (2010a) Effect of soap, methanol, and water on glycerol particle size in biodiesel purification. Energy Fuels 24:6179–6186

    Article  Google Scholar 

  • Saleh J, Dubé MA, Tremblay AY (2011) Separation of glycerol from FAME using ceramic membranes. Fuel Process Technol 92:1305–1310

    Article  Google Scholar 

  • Saleh J, Tremblay AY, Dubé MA (2010b) Glycerol removal from biodiesel using membrane separation technology. Fuel 89:2260–2266

    Article  Google Scholar 

  • Satyarthi J, Chiranjeevi T, Gokak D, Viswanathan P (2013) An overview of catalytic conversion of vegetable oils/fats into middle distillates. Catal Sci Technol 3:70–80

    Article  Google Scholar 

  • Schlatter JC, Oyama ST, Metcalfe III, JE, Lambert Jr, JM (1988) Catalytic behavior of selected transition metal carbides, nitrides, and borides in the hydrodenitrogenation of quinoline. Ind Eng Chem Res 27:1648–1653

    Article  Google Scholar 

  • Schuchardt U, Sercheli R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9:199–210

    Article  Google Scholar 

  • Şenol O, Viljava T-R, Krause A (2005a) Hydrodeoxygenation of aliphatic esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalyst: the effect of water. Catal Today 106:186–189

    Article  Google Scholar 

  • Şenol O, Viljava T-R, Krause A (2005b) Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catal Today 100:331–335

    Article  Google Scholar 

  • Serrano M, Bouaid A, Martínez M, Aracil J (2013) Oxidation stability of biodiesel from different feedstocks: influence of commercial additives and purification step. Fuel 113:50–58

    Article  Google Scholar 

  • Shahbaz K, Mjalli F, Hashim M, Alnashef I (2011) Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Sep Purif Technol 81:216–222

    Article  Google Scholar 

  • Shahbaz K, Mjalli FS, Hashim M, Al-Nashef IM (2010) Using deep eutectic solvents for the removal of glycerol from palm oil-based biodiesel. J Appl Sci 10:3349–3354

    Article  Google Scholar 

  • Shi W, Li H, Su Y, Liu J (2016a) Biodiesel production by quaternized polysulfone membrane: experimental and kinetics model. Energy Procedia 104:402–406

    Article  Google Scholar 

  • Shi W, Li H, Zhou R, Zhang H, Du Q (2016b) Biodiesel production from soybean oil by quaternized polysulfone alkali-catalyzed membrane. Bioresource Technol 210:43–48

    Article  Google Scholar 

  • Simakova I, Rozmysłowicz B, Simakova O, Mäki-Arvela P, Simakov A, Murzin DY (2011) Catalytic deoxygenation of C18 fatty acids over mesoporous Pd/C catalyst for synthesis of biofuels. Top Catal 54:460–466

    Article  Google Scholar 

  • Simakova I, Simakova O, Mäki-Arvela P, Simakov A, Estrada M, Murzin DY (2009) Deoxygenation of palmitic and stearic acid over supported Pd catalysts: effect of metal dispersion. Appl Catal A: General 355:100–108

    Article  Google Scholar 

  • Simasatitkul L, Siricharnsakunchai P, Patcharavorachot Y, Assabumrungrat S, Arpornwichanop A (2011) Reactive distillation for biodiesel production from soybean oil. Korean J Chem Eng 28:649–655

    Article  Google Scholar 

  • Slade RC, Kizewski JP, Poynton SD, Zeng R, Varcoe JR (2012) Alkaline membrane fuel cells. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. Springer, New York, United States

    Chapter  Google Scholar 

  • Snåre M, Kubičková I, Mäki-Arvela P, Chichova D, Eränen K, Murzin DY (2008) Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel 87:933–945

    Article  Google Scholar 

  • Snåre M, Kubickova I, Mäki-Arvela P, Eränen K, Murzin DY (2006) Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind Eng Chem Res 45:5708–5715

    Article  Google Scholar 

  • Snåre M, Kubičková I, Mäki-Arvela P, Eränen K, Wärnå J, Murzin DY (2007) Production of diesel fuel from renewable feeds: kinetics of ethyl stearate decarboxylation. Chem Eng J 134:29–34

    Article  Google Scholar 

  • Snåre M, Mäki-Arvela P, Simakova I, Myllyoja J, Murzin DY (2009) Overview of catalytic methods for production of next generation biodiesel from natural oils and fats. Russian J Phys Chem B 3:1035–1043

    Article  Google Scholar 

  • Sotelo-Boyas R, Liu Y, Minowa T (2010) Renewable diesel production from the hydrotreating of rapeseed oil with Pt/Zeolite and NiMo/Al2O3 catalysts. Ind Eng Chem Res 50:2791–2799

    Article  Google Scholar 

  • Sousa L, Zotin J, da Silva VT (2012) Hydrotreatment of sunflower oil using supported molybdenum carbide. Appl Catal A: General 449:105–111

    Article  Google Scholar 

  • Srifa A, Faungnawakij K, Itthibenchapong V, Assabumrungrat S (2015) Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel. Chem Eng J 278:249–258

    Article  Google Scholar 

  • Srinivasan S (2009) The food v. fuel debate: A nuanced view of incentive structures. Renew Energy 34:950–954

    Article  Google Scholar 

  • Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today 153:1–68

    Article  Google Scholar 

  • Stellwagen DR, Bitter JH (2015) Structure–performance relations of molybdenum-and tungsten carbide catalysts for deoxygenation. Green Chem 17:582–593

    Article  Google Scholar 

  • Stöcker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47:9200–9211

    Article  Google Scholar 

  • Stojković IJ, Stamenković OS, Povrenović DS, Veljković VB (2014) Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renew Sustain Energy Rev 32:1–15

    Article  Google Scholar 

  • Tremblay A, Cao P, Dubé MA (2008) Biodiesel production using ultralow catalyst concentrations. Energy Fuels 22:2748–2755

    Article  Google Scholar 

  • Treybal RE (1980) Mass transfer operations, 3rd edn. McGraw-Hill, New York, United States

    Google Scholar 

  • Twaiq FA, Zabidi NA, Bhatia S (1999) Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts. Ind Eng Chem Res 38:3230–3237

    Article  Google Scholar 

  • UOP H G D (2017) UOP, Honeywell Green Diesel. https://www.uop.com/processing-solutions/renewables/green-diesel/#biodiesel. Accessed 02 June 2017

  • van der Graaf S, Schroën C, Boom R (2005) Preparation of double emulsions by membrane emulsification—a review. J Membr Sci 251:7–15

    Article  Google Scholar 

  • Van Gerpen J, Shanks B, Pruszko R, Clements D, Knothe G (2004) Biodiesel production technology: August 2002–January 2004, NREL/SR-510-36244. National Renewable Energy Laboratory

    Google Scholar 

  • Veljković VB, Banković-Ilić IB, Stamenković OS (2015) Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification. Renew Sustain Energy Rev 49:500–516

    Article  Google Scholar 

  • Venkatesan S (2013) Adsorption. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United Kingdom

    Google Scholar 

  • Vinh TQ, Loan NTT, Yang X-Y, Su B-L (2011) Preparation of bio-fuels by catalytic cracking reaction of vegetable oil sludge. Fuel 90:1069–1075

    Article  Google Scholar 

  • Wall J, van Gerpen J, Thompson J (2011) Soap and glycerin removal from biodiesel using waterless processes. Trans ASABE 54:535–541

    Article  Google Scholar 

  • Wang H, Yan S, Salley SO, Ng KS (2012) Hydrocarbon fuels production from hydrocracking of soybean oil using transition metal carbides and nitrides supported on ZSM-5. Ind Eng Chem Res 51:10066–10073

    Article  Google Scholar 

  • Wang H, Yan S, Salley SO, Ng KS (2013) Support effects on hydrotreating of soybean oil over NiMo carbide catalyst. Fuel 111:81–87

    Article  Google Scholar 

  • Wang J, Ge X, Wang Z, Jin Y (2001) Experimental studies on the catalytic distillation for hydrolysis of methyl acetate. Chem Eng Technol 24:155–159

    Article  Google Scholar 

  • Wang Y, Nie J, Zhao M, Ma S, Kuang L, Han X, Tang S (2010) Production of biodiesel from waste cooking oil via a two-step catalyzed process and molecular distillation. Energy Fuels 24:2104–2108

    Article  Google Scholar 

  • Wang Y, Wang X, Liu Y, Ou S, Tan Y, Tang S (2009) Refining of biodiesel by ceramic membrane separation. Fuel Process Technol 90:422–427

    Article  Google Scholar 

  • Wei C-Y, Huang T-C, Yu Z-R, Wang B-J, Chen H-H (2014) Fractionation for biodiesel purification using supercritical carbon dioxide. Energies 7:824–833

    Article  Google Scholar 

  • Wijffels RH, Barbosa MJ, Eppink MH (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioprod Biorefin 4:287–295

    Article  Google Scholar 

  • Yang C, Li R, Cui C, Liu S, Qiu Q, Ding Y, Wu Y, Zhang B (2016) Catalytic hydroprocessing of microalgae-derived biofuels: a review. Green Chem 18:3684–3699

    Article  Google Scholar 

  • Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, New Jersey, United States

    Google Scholar 

  • Yang Y, Chen J, Shi H (2013a) Deoxygenation of methyl laurate as a model compound to hydrocarbons on Ni2P/SiO2, Ni2P/MCM-41, and Ni2P/SBA-15 catalysts with different dispersions. Energy Fuels 27:3400–3409

    Article  Google Scholar 

  • Yang Y, Ochoa-Hernández C, de la Peña O’shea VCA, Coronado JM, Serrano DP (2012) Ni2P/SBA-15 as a hydrodeoxygenation catalyst with enhanced selectivity for the conversion of methyl oleate into n-octadecane. ACS Catal 2:592–598

    Google Scholar 

  • Yang Y, Ochoa-Hernández C, Pizarro P, Víctor A, Coronado JM, Serrano DP (2015) Influence of the Ni/P ratio and metal loading on the performance of NixPy/SBA-15 catalysts for the hydrodeoxygenation of methyl oleate. Fuel 144:60–70

    Article  Google Scholar 

  • Yang Y, Wang Q, Zhang X, Wang L, Li G (2013b) Hydrotreating of C18 fatty acids to hydrocarbons on sulphided NiW/SiO2–Al2O3. Fuel Process Technol 116:165–174

    Article  Google Scholar 

  • Yilmaz G, Jongboom R, Van Soest J, Feil H (1999) Effect of glycerol on the morphology of starch–sunflower oil composites. Carbohydr Polym 38:33–39

    Google Scholar 

  • Yori J, D’Ippolito S, Pieck C, Vera C (2007) Deglycerolization of biodiesel streams by adsorption over silica beds. Energy Fuels 21:347–353

    Article  Google Scholar 

  • Zarchin R, Rabaev M, Vidruk-Nehemya R, Landau MV, Herskowitz M (2015) Hydroprocessing of soybean oil on nickel-phosphide supported catalysts. Fuel 139:684–691

    Article  Google Scholar 

  • Zhao C, Brück T, Lercher JA (2013) Catalytic deoxygenation of microalgae oil to green hydrocarbons. Green Chem 15:1720–1739

    Article  Google Scholar 

  • Zhao H, Baker GA (2013) Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review. J Chem Technol Biotechnol 88:3–12

    Article  Google Scholar 

  • Zhu X, Lobban LL, Mallinson RG, Resasco DE (2011) Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. J Catal 281:21–29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Bateni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bateni, H., Saraeian, A., Able, C., Karimi, K. (2019). Biodiesel Purification and Upgrading Technologies. In: Tabatabaei, M., Aghbashlo, M. (eds) Biodiesel. Biofuel and Biorefinery Technologies, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-00985-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00985-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00984-7

  • Online ISBN: 978-3-030-00985-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics