Biodiesel pp 57-100 | Cite as

Biodiesel Purification and Upgrading Technologies

  • Hamed BateniEmail author
  • Alireza Saraeian
  • Chad Able
  • Keikhosro Karimi
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 8)


Biodiesel purification is a crucial process in meeting fuel grade standard specifications. Inadequate purification results in a low-quality fuel and hampers engine performance. Conventional wet and dry washing along with membrane refining technologies are the most discussed methods in the literature for biodiesel purification. The conventional wet washing is performed using organic solvents, deionized water, or an acid solution. However, these methods result in a large quantity of wastewater, which creates a significant cost for wastewater treatment besides environmental impacts. Dry washing techniques were introduced to address this deficiency. In these methods, an appropriate adsorbent media such as Magnesol, an ion exchange resin, or active carbon is utilized to remove the impurities. The challenges associated with wet and dry techniques motivated scientists to seek more innovative techniques. Regarding biodiesel purification, organic and ceramic membrane technologies have received increasing attention. Biodiesel upgrading is an alternative route for producing diesel-like fuels with properties that can exceed conventional petroleum diesel. Since oxygenated moieties of biodiesel are the main reason for its poor fuel properties (e.g., high viscosity, low energy density, low chemical stability, and poor cold flow behavior), most of these upgrading techniques have focused on deoxygenation pathways. Hydrodeoxygenation using various catalytic systems have also been studied extensively to produce renewable diesel with high yields and high carbon efficiency. This chapter presents the basics and applied aspects of biodiesel purification and upgrading along with an overview on different techniques, challenges, and the overall trend of research.


  1. ASTM D6751 (2015) Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. ASTM International, West Conshohocken, PAGoogle Scholar
  2. EN 14214 (2008) Automotive fuels—fatty acid methyl esters (fame) for diesel engines—requirements and test methods. European Committee for Standardization, Brussels, BelgiumGoogle Scholar
  3. Abbaszadeh A, Ghobadian B, Najafi G, Yusaf T (2014) An experimental investigation of the effective parameters on wet washing of biodiesel purification. Int J Autom Mech Eng 9:1525–1537CrossRefGoogle Scholar
  4. Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E (2007) Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem 9:868–872CrossRefGoogle Scholar
  5. Alba-Rubio A, Castillo MA, Albuquerque M, Mariscal R, Cavalcante C, Granados ML (2012) A new and efficient procedure for removing calcium soaps in biodiesel obtained using CaO as a heterogeneous catalyst. Fuel 95:464–470CrossRefGoogle Scholar
  6. Alicieo T, Mendes E, Pereira N, Lima OM (2002) Membrane ultrafiltration of crude soybean oil. Desalination 148:99–102CrossRefGoogle Scholar
  7. Alves MJ, Nascimento SM, Pereira IG, Martins MI, Cardoso VL, Reis M (2013) Biodiesel purification using micro and ultrafiltration membranes. Renew Energy 58:15–20CrossRefGoogle Scholar
  8. Ardiyanti A, Gutierrez A, Honkela M, Krause A, Heeres H (2011) Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono-and bimetallic (Pt, Pd, Rh) catalysts. Appl Catal A 407:56–66CrossRefGoogle Scholar
  9. Armor J (1998) Applications of catalytic inorganic membrane reactors to refinery products. J Membr Sci 147:217–233CrossRefGoogle Scholar
  10. Aslam M, Kothiyal N, Sarma A (2015) True boiling point distillation and product quality assessment of biocrude obtained from Mesua ferrea L. seed oil via hydroprocessing. Clean Technol Environ Policy 17:175–185CrossRefGoogle Scholar
  11. Atadashi I (2015) Purification of crude biodiesel using dry washing and membrane technologies. Alexandria Engineering Journal 54:1265–1272CrossRefGoogle Scholar
  12. Atadashi I, Aroua M, Aziz AA (2011a) Biodiesel separation and purification: a review. Renew Energy 36:437–443CrossRefGoogle Scholar
  13. Atadashi I, Aroua M, Aziz AA, Sulaiman N (2011b) Membrane biodiesel production and refining technology: a critical review. Renew Sustain Energy Rev 15:5051–5062CrossRefGoogle Scholar
  14. Atadashi I, Aroua M, Aziz AA, Sulaiman N (2011c) Refining technologies for the purification of crude biodiesel. Appl Energy 88:4239–4251CrossRefGoogle Scholar
  15. Atadashi I, Aroua M, Aziz AA, Sulaiman N (2012) High quality biodiesel obtained through membrane technology. J Membr Sci 421:154–164CrossRefGoogle Scholar
  16. Badawi M, Paul J, Cristol S, Payen E, Romero Y, Richard F, Brunet S, Lambert D, Portier X, Popov A (2011) Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: a combined experimental and DFT study. J Catal 282:155–164CrossRefGoogle Scholar
  17. Baroutian S, Aroua MK, Raman AAA, Sulaiman NM (2011) A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Biores Technol 102:1095–1102CrossRefGoogle Scholar
  18. Barredo-Damas S, Alcaina-Miranda M, Bes-Piá A, Iborra-Clar M, Iborra-Clar A, Mendoza-Roca J (2010) Ceramic membrane behavior in textile wastewater ultrafiltration. Desalination 250:623–628CrossRefGoogle Scholar
  19. Basso RC, Viotto LA, Gonçalves LAG (2006) Cleaning process in ceramic membrane used for the ultrafiltration of crude soybean oil. Desalination 200:85–86CrossRefGoogle Scholar
  20. Bateni H, Bateni F, Karimi K (2016) Effects of oil extraction on ethanol and biogas production from Eruca sativa seed cake. In: Waste and biomass valorization. Scholar
  21. Bateni H, Karimi K (2016a) Biodiesel production from castor plant integrating ethanol production via a biorefinery approach. Chem Eng Res Des 107:4–12CrossRefGoogle Scholar
  22. Bateni H, Karimi K (2016b) Biorefining of Eruca sativa plant for efficient biofuel production. RSC Adv 6:34492–34500CrossRefGoogle Scholar
  23. Bateni H, Karimi K, Zamani A, Benakashani F (2014) Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective. Appl Energy 136:14–22CrossRefGoogle Scholar
  24. Bateni H, Saraeian A, Able C (2017) A comprehensive review on biodiesel purification and upgrading. Biofuel Res J 15:559–612. Scholar
  25. Bernas H, Eränen K, Simakova I, Leino A-R, Kordás K, Myllyoja J, Mäki-Arvela P, Salmi T, Murzin DY (2010) Deoxygenation of dodecanoic acid under inert atmosphere. Fuel 89:2033–2039CrossRefGoogle Scholar
  26. Berrios M, Siles J, Martín M, Martín A (2013) Ion exchange. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United KingdomCrossRefGoogle Scholar
  27. Berrios M, Skelton R (2008) Comparison of purification methods for biodiesel. Chem Eng J 144:459–465CrossRefGoogle Scholar
  28. Bezergianni S, Dimitriadis A, Kalogianni A, Pilavachi PA (2010a) Hydrotreating of waste cooking oil for biodiesel production. Part I: Effect of temperature on product yields and heteroatom removal. Biores Technol 101:6651–6656CrossRefGoogle Scholar
  29. Bezergianni S, Dimitriadis A, Sfetsas T, Kalogianni A (2010b) Hydrotreating of waste cooking oil for biodiesel production. Part II: Effect of temperature on hydrocarbon composition. Biores Technol 101:7658–7660CrossRefGoogle Scholar
  30. Bhayani BV, Ramarao BV (2013) Filtration-based separations in the biorefinery. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United KingdomCrossRefGoogle Scholar
  31. Boda L, Onyestyák G, Solt H, Lónyi F, Valyon J, Thernesz A (2010) Catalytic hydroconversion of tricaprylin and caprylic acid as model reaction for biofuel production from triglycerides. Appl Catal A 374:158–169CrossRefGoogle Scholar
  32. Canakci M, van Gerpen J (2003) A pilot plant to produce biodiesel from high free fatty acid feedstocks. Trans ASAE 46:945–954Google Scholar
  33. Cao P, Dubé MA, Tremblay AY (2008a) High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor. Biomass Bioenerg 32:1028–1036CrossRefGoogle Scholar
  34. Cao P, Dubé MA, Tremblay AY (2008b) Methanol recycling in the production of biodiesel in a membrane reactor. Fuel 87:825–833CrossRefGoogle Scholar
  35. Cao P, Tremblay AY, Dubé MA, Morse K (2007) Effect of membrane pore size on the performance of a membrane reactor for biodiesel production. Ind Eng Chem Res 46:52–58CrossRefGoogle Scholar
  36. Chen B, Wang W, Liu X, Xue W, Ma X, Chen G, Yu Q, Li R (2012a) Adsorption study of glycerol in biodiesel on the sulfonated adsorbent. Ind Eng Chem Res 51:12933–12939CrossRefGoogle Scholar
  37. Chen B, Wang W, Ma X, Wang C, Li R (2012b) Adsorption behaviors of glycerol from biodiesel on sulfonated polystyrene-divinylbenzene resins in different forms. Energy Fuels 26:7060–7067CrossRefGoogle Scholar
  38. Chen J, Yang Y, Shi H, Li M, Chu Y, Pan Z, Yu X (2014) Regulating product distribution in deoxygenation of methyl laurate on silica-supported Ni–Mo phosphides: Effect of Ni/Mo ratio. Fuel 129:1–10CrossRefGoogle Scholar
  39. Cheng L-H, Cheng Y-F, Yen S-Y, Chen J (2009) Ultrafiltration of triglyceride from biodiesel using the phase diagram of oil–FAME–MeOH. J Membr Sci 330:156–165CrossRefGoogle Scholar
  40. Chhetri AB, Watts KC, Islam MR (2008) Waste cooking oil as an alternate feedstock for biodiesel production. Energies 1:3–18CrossRefGoogle Scholar
  41. Choudhary T, Phillips C (2011) Renewable fuels via catalytic hydrodeoxygenation. Appl Catal A 397:1–12CrossRefGoogle Scholar
  42. Coêlho DG, Almeida AP, Soletti JI, de Carvalho SH (2011) Influence of variables in the purification process of castor oil biodiesel. Chem Eng Trans 24:829–834Google Scholar
  43. Coumans A, Hensen E (2017) A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide. Appl Catal B 201:290–301CrossRefGoogle Scholar
  44. da Silva NDL, Santander CMG, Batistella CB, Maciel Filho R, Maciel MRW (2010) Biodiesel production from integration between reaction and separation system: reactive distillation process. Appl Biochem Biotechnol 161:245–254CrossRefGoogle Scholar
  45. Dechow FJ (1989) Separation and purification techniques in biotechnology. Noyes Publications, Park Ridge, United StatesGoogle Scholar
  46. Demirbas A (2008) Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers Manag 49:125–130CrossRefGoogle Scholar
  47. Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50:14–34CrossRefGoogle Scholar
  48. Deroussel P, Khakhar D, Ottino J (2001) Mixing of viscous immiscible liquids. Part 2: Overemulsification—interpretation and use. Chem Eng Sci 56:5531–5537CrossRefGoogle Scholar
  49. Dias J, Santos E, Santo F, Carvalho F, Alvim-Ferraz M, Almeida M (2014) Study of an ethylic biodiesel integrated process: raw-materials, reaction optimization and purification methods. Fuel Process Technol 124:198–205CrossRefGoogle Scholar
  50. Dimian AC, Bildea CS, Omota F, Kiss AA (2009) Innovative process for fatty acid esters by dual reactive distillation. Comput Chem Eng 33:743–750CrossRefGoogle Scholar
  51. Do PT, Chiappero M, Lobban LL, Resasco DE (2009) Catalytic deoxygenation of methyl-octanoate and methyl-stearate on Pt/Al2O3. Catal Lett 130:9–18CrossRefGoogle Scholar
  52. Dubé M, Tremblay A, Liu J (2007) Biodiesel production using a membrane reactor. Biores Technol 98:639–647CrossRefGoogle Scholar
  53. Dugan J (2007) A dry wash approach to biodiesel purification. Assessed 15 Mar 2017
  54. Dumay J, Radier S, Barnathan G, Berge J-P, Jaouen P (2008) Recovery of valuable soluble compounds from washing waters generated during small fatty pelagic surimi processing by membrane processes. Environ Technol 29:451–461CrossRefGoogle Scholar
  55. Dupain X, Costa DJ, Schaverien CJ, Makkee M, Moulijn JA (2007) Cracking of a rapeseed vegetable oil under realistic FCC conditions. Appl Catal B 72:44–61CrossRefGoogle Scholar
  56. Erich K (1982) Separating processes. In: Erich K (ed) Handbook of laboratory distillation with an introduction to pilot plant distillation. Elsevier, New York, United StatesGoogle Scholar
  57. Escobar JC, Lora ES, Venturini OJ, Yáñez EE, Castillo EF, Almazan O (2009) Biofuels: environment, technology and food security. Renew Sustain Energy Rev 13:1275–1287CrossRefGoogle Scholar
  58. Faccini CS, Cunha MED, Moraes MSA, Krause LC, Manique MC, Rodrigues MRA, Benvenutti EV, Caramão EB (2011) Dry washing in biodiesel purification: a comparative study of adsorbents. J Braz Chem Soc 22:558–563CrossRefGoogle Scholar
  59. Fadhil A, Dheyab M (2015) Purification of biodiesel fuels produced from spent frying oils over activated carbons. Energy Sources Part A: Recovery Util Environ Eff 37:149–155CrossRefGoogle Scholar
  60. Falahati H, Tremblay A (2012) The effect of flux and residence time in the production of biodiesel from various feedstocks using a membrane reactor. Fuel 91:126–133CrossRefGoogle Scholar
  61. Ferrero G, Almeida M, Alvim-Ferraz M, Dias J (2014) Water-free process for eco-friendly purification of biodiesel obtained using a heterogeneous Ca-based catalyst. Fuel Process Technol 121:114–118CrossRefGoogle Scholar
  62. Foraita S, Liu Y, Haller GL, Baráth E, Zhao C, Lercher JA (2017) Controlling hydrodeoxygenation of stearic acid to n-heptadecane and n-octadecane by adjusting the chemical properties of Ni/SiO2–ZrO2 catalyst. ChemCatChem 9:195–203CrossRefGoogle Scholar
  63. Freeman BD, Paul DR, Czenkusch K, Ribeiro CP, Ba C (2012) Thermally Rearranged (TR) polymers as membranes for ethanol dehydrationGoogle Scholar
  64. Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A 199:147–190CrossRefGoogle Scholar
  65. Furimsky E, Massoth FE (1999) Deactivation of hydroprocessing catalysts. Catal Today 52:381–495CrossRefGoogle Scholar
  66. Giorno F, Mazzei R, Giorno L (2013) Purification of triacylglycerols for biodiesel production from Nannochloropsis microalgae by membrane technology. Biores Technol 140:172–178CrossRefGoogle Scholar
  67. Gomes MCS, Arroyo PA, Pereira NC (2011) Biodiesel production from degummed soybean oil and glycerol removal using ceramic membrane. J Membr Sci 378:453–461CrossRefGoogle Scholar
  68. Gomes MCS, Arroyo PA, Pereira NC (2013) Influence of acidified water addition on the biodiesel and glycerol separation through membrane technology. J Membr Sci 431:28–36CrossRefGoogle Scholar
  69. Gomes MCS, Pereira NC, de Barros STD (2010) Separation of biodiesel and glycerol using ceramic membranes. J Membr Sci 352:271–276CrossRefGoogle Scholar
  70. Gomes MG, Santos DQ, de Morais LC, Pasquini D (2015) Purification of biodiesel by dry washing, employing starch and cellulose as natural adsorbents. Fuel 155:1–6CrossRefGoogle Scholar
  71. Gomez-Castro FI, Rico-Ramirez V, Segovia-Hernandez JG, Hernandez S (2010) Feasibility study of a thermally coupled reactive distillation process for biodiesel production. Chem Eng Process 49:262–269CrossRefGoogle Scholar
  72. Gong S, Shinozaki A, Shi M, Qian EW (2012) Hydrotreating of jatropha oil over alumina based catalysts. Energy Fuels 26:2394–2399CrossRefGoogle Scholar
  73. Gosselink RW, Hollak SA, Chang SW, van Haveren J, de Jong KP, Bitter JH, van Es DS (2013a) Reaction pathways for the deoxygenation of vegetable oils and related model compounds. Chemsuschem 6:1576–1594CrossRefGoogle Scholar
  74. Gosselink RW, Stellwagen DR, Bitter JH (2013b) Tungsten-based catalysts for selective deoxygenation. Angew Chem 125:5193–5196CrossRefGoogle Scholar
  75. Grandison AS (1996) Ion-exchange and electrodialysis. In: Grandison AS, Lewis MJ (eds) Separation processes in the food and biotechnology industries. Woodhead Publishing, Cambridge, United KingdomCrossRefGoogle Scholar
  76. Greenwell H, Laurens L, Shields R, Lovitt R, Flynn K (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726CrossRefGoogle Scholar
  77. Groeneweg F, Agterof W, Jaeger P, Janssen J, Wieringa J, Klahn J (1998) On the mechanism of the inversion of emulsions. Chem Eng Res Des 76:55–63CrossRefGoogle Scholar
  78. Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecules 15:2405–2426CrossRefGoogle Scholar
  79. Han J, Duan J, Chen P, Lou H, Zheng X (2011a) Molybdenum carbide-catalyzed conversion of renewable oils into diesel-like hydrocarbons. Adv Synth Catal 353:2577–2583CrossRefGoogle Scholar
  80. Han J, Duan J, Chen P, Lou H, Zheng X, Hong H (2011b) Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils. Green Chem 13:2561–2568CrossRefGoogle Scholar
  81. Han J, Duan J, Chen P, Lou H, Zheng X, Hong H (2012) Carbon-supported molybdenum carbide catalysts for the conversion of vegetable oils. Chemsuschem 5:727–733CrossRefGoogle Scholar
  82. Hanafi SA, Mohamed MS (2011) Recent trends in the cleaning of diesel fuels via desulfurization processes. Energy Sources Part A: Recovery Util Environ Eff 33:495–511CrossRefGoogle Scholar
  83. Hanson C (1971) Solvent extraction: the current position. In: Hanson C (ed) Recent advances in liquid–liquid extraction. Pergamon Press, Oxford, United KingdomGoogle Scholar
  84. Hao JH, Chen C, Li L, Yu L, Jiang W (2000) Preparation of solvent-resistant anion-exchange membranes. Desalination 129:15–22CrossRefGoogle Scholar
  85. Hayyan M, Mjalli FS, Hashim MA, Alnashef IM (2010) A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Process Technol 91:116–120CrossRefGoogle Scholar
  86. He H, Guo X, Zhu S (2006) Comparison of membrane extraction with traditional extraction methods for biodiesel production. J Am Oil Chem Soc 83:457–460CrossRefGoogle Scholar
  87. Ho RM, Wu CH, Su AC (1990) Morphology of plastic/rubber blends. Polym Eng Sci 30:511–518CrossRefGoogle Scholar
  88. Hollak SA, Gosselink RW, van Es DS, Bitter JH (2013) Comparison of tungsten and molybdenum carbide catalysts for the hydrodeoxygenation of oleic acid. ACS Catal 3:2837–2844CrossRefGoogle Scholar
  89. Hua F, Tsang Y, Wang Y, Chan S, Chua H, Sin S (2007) Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chem Eng J 128:169–175CrossRefGoogle Scholar
  90. Huang H-J, Ramaswamy S (2013) Overview of biomass conversion processes and separation and purification technologies in biorefineries. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United KingdomGoogle Scholar
  91. Huerga IR, Zanuttini MS, Gross MS, Querini CA (2014) Biodiesel production from Jatropha curcas: Integrated process optimization. Energy Convers Manag 80:1–9CrossRefGoogle Scholar
  92. Immer JG, Kelly MJ, Lamb HH (2010) Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Appl Catal A 375:134–139CrossRefGoogle Scholar
  93. Itthibenchapong V, Srifa A, Kaewmeesri R, Kidkhunthod P, Faungnawakij K (2017) Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS2/γ-Al2O3 catalysts. Energy Convers Manag 134:188–196CrossRefGoogle Scholar
  94. Jaber R, Shirazi M, Toufaily J, Hamieh A, Noureddin A, Ghanavati H, Ghaffari A, Zenouzi A, Karout A, Ismail A (2015) Biodiesel wash-water reuse using microfiltration: toward zero-discharge strategy for cleaner and economized biodiesel production. Biofuel Res J 2:148–151CrossRefGoogle Scholar
  95. Jiang LY, Wang Y, Chung T-S, Qiao XY, Lai J-Y (2009) Polyimides membranes for pervaporation and biofuels separation. Prog Polym Sci 34:1135–1160CrossRefGoogle Scholar
  96. Jönsson A-S (2013) Microfiltration, ultrafiltration and diafiltration. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United KingdomCrossRefGoogle Scholar
  97. Kandel K, Anderegg JW, Nelson NC, Chaudhary U, Slowing II (2014) Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel. J Catal 314:142–148CrossRefGoogle Scholar
  98. Karaosmanoǧlu F, Cıǧızoǧlu KB, Tüter M, Ertekin S (1996) Investigation of the refining step of biodiesel production. Energy Fuels 10:890–895CrossRefGoogle Scholar
  99. Kertes AS (1971) The chemistry of solvent extraction. In: Hanson C (ed) Recent advances in liquid–liquid extraction. Pergamon Press, Oxford, United KingdomCrossRefGoogle Scholar
  100. Kiatkittipong W, Phimsen S, Kiatkittipong K, Wongsakulphasatch S, Laosiripojana N, Assabumrungrat S (2013) Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil. Fuel Process Technol 116:16–26CrossRefGoogle Scholar
  101. Kim H-J, Kang B-S, Kim M-J, Park YM, Kim D-K, Lee J-S, Lee K-Y (2004) Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal Today 93:315–320CrossRefGoogle Scholar
  102. Kiss AA (2010) Separative reactors for integrated production of bioethanol and biodiesel. Comput Chem Eng 34:812–820CrossRefGoogle Scholar
  103. Kiss AA (2013) Advanced distillation technologies: design, control and applications. Wiley, Chichester, United KingdomCrossRefGoogle Scholar
  104. Kiss AA, Dimian AC, Rothenberg G (2006a) Solid acid catalysts for biodiesel production—towards sustainable energy. Adv Synth Catal 348:75–81CrossRefGoogle Scholar
  105. Kiss AA, Omota F, Dimian AC, Rothenberg G (2006b) The heterogeneous advantage: biodiesel by catalytic reactive distillation. Top Catal 40:141–150CrossRefGoogle Scholar
  106. Kiss AA, Dimian AC, Rothenberg G (2007) Biodiesel by catalytic reactive distillation powered by metal oxides. Energy Fuels 22:598–604CrossRefGoogle Scholar
  107. Knothe G (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36:364–373CrossRefGoogle Scholar
  108. Kolah AK, Lira CT, Miller DJ (2013) Reactive distillation for the biorefinery. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United KingdomCrossRefGoogle Scholar
  109. Kubička D, Horáček J (2011) Deactivation of HDS catalysts in deoxygenation of vegetable oils. Appl Catal A 394:9–17CrossRefGoogle Scholar
  110. Kubička D, Kaluža L (2010) Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal A 372:199–208CrossRefGoogle Scholar
  111. Kubičková I, Snåre M, Eränen K, Mäki-Arvela P, Murzin DY (2005) Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catal Today 106:197–200CrossRefGoogle Scholar
  112. Lam E, Luong JH (2014) Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal 4:3393–3410CrossRefGoogle Scholar
  113. Laurent E, Delmon B (1994) Influence of water in the deactivation of a sulfided NiMo γ-Al2O3 catalyst during hydrodeoxygenation. J Catal 146:281288–285291CrossRefGoogle Scholar
  114. Leeruang U, Pengprecha S (2012) Purification of biodiesel by adsorption with activated low silica bentonite. In: International conference on chemical processes and environmental issues, SingaporeGoogle Scholar
  115. Lei Z, Chen B, Ding Z (2005) Special distillation processes. Elsevier, Amsterdam, NetherlandsGoogle Scholar
  116. Lestari S, Maki-Arvela P, Bernas H, Simakova O, Sjöholm R, Beltramini J, Lu GM, Myllyoja J, Simakova I, Murzin DY (2009a) Catalytic deoxygenation of stearic acid in a continuous reactor over a mesoporous carbon-supported Pd catalyst. Energy Fuels 23:3842–3845CrossRefGoogle Scholar
  117. Lestari S, Mäki-Arvela P, Simakova I, Beltramini J, Lu GM, Murzin DY (2009b) Catalytic deoxygenation of stearic acid and palmitic acid in semibatch mode. Catal Lett 130:48–51CrossRefGoogle Scholar
  118. Lestari S, Mäki-Arvela P, Eränen K, Beltramini J, Lu GM, Murzin DY (2010) Diesel-like hydrocarbons from catalytic deoxygenation of stearic acid over supported Pd nanoparticles on SBA-15 catalysts. Catal Lett 134:250–257CrossRefGoogle Scholar
  119. Lestari S, Mäki-Arvela P, Beltramini J, Lu G, Murzin DY (2009c) Transforming triglycerides and fatty acids into biofuels. Chemsuschem 2:1109–1119CrossRefGoogle Scholar
  120. Lestari S, Simakova I, Tokarev A, Mäki-Arvela P, Eränen K, Murzin DY (2008) Synthesis of biodiesel via deoxygenation of stearic acid over supported Pd/C catalyst. Catal Lett 122:247–251CrossRefGoogle Scholar
  121. Levan MD, Carta G (2008) Section 16. Adsorption and ion exchange. In: Green DW, Perry RH (eds) Perry’s chemical engineers’ handbook, 8th edn. McGraw-Hill, New York, United StatesGoogle Scholar
  122. Lewis MJ (1996) Solids separation processes. In: Separation processes in the food and biotechnology industries. Woodhead Publishing, Cambridge, United KingdomCrossRefGoogle Scholar
  123. Li L, Wang Y (2005) Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells. J Membr Sci 262:1–4CrossRefGoogle Scholar
  124. Li M, Zhang H, Shao Z-G (2006) Quaternized poly (phthalazinone ether sulfone ketone) membrane doped with H3PO4 for high-temperature PEMFC operation. Electrochem Solid-State Lett 9:A60–A63CrossRefGoogle Scholar
  125. Liu Y, Sotelo-Boyás R, Murata K, Minowa T, Sakanishi K (2011) Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni–Mo and solid acids. Energy Fuels 25:4675–4685CrossRefGoogle Scholar
  126. Ma F, Clements LD, Hanna MA (1998) Biodiesel fuel from animal fat. Ancillary studies on transesterification of beef tallow. Ind Eng Chem Res 37:3768–3771CrossRefGoogle Scholar
  127. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresource Technol 70:1–15CrossRefGoogle Scholar
  128. Machado GD, Aranda DA, Castier M, Cabral VF, Cardozo-Filho LC (2011) Computer simulation of fatty acid esterification in reactive distillation columns. Ind Eng Chem Res 50:10176–10184CrossRefGoogle Scholar
  129. Madsen AT, Christensen CH, Fehrmann R, Riisager A (2011) Hydrodeoxygenation of waste fat for diesel production: Study on model feed with Pt/alumina catalyst. Fuel 90:3433–3438CrossRefGoogle Scholar
  130. Mah S-K, Leo C, Wu TY, Chai S-P (2012) A feasibility investigation on ultrafiltration of palm oil and oleic acid removal from glycerin solutions: flux decline, fouling pattern, rejection and membrane characterizations. J Membr Sci 389:245–256CrossRefGoogle Scholar
  131. Mäki-Arvela P, Kubickova I, Snåre M, Eränen K, Murzin DY (2007) Catalytic deoxygenation of fatty acids and their derivatives. Energy Fuels 21:30–41CrossRefGoogle Scholar
  132. Mäki-Arvela P, Snåre M, Eränen K, Myllyoja J, Murzin DY (2008) Continuous decarboxylation of lauric acid over Pd/C catalyst. Fuel 87:3543–3549CrossRefGoogle Scholar
  133. Manesiotis P, Theodoridis G (2016) Affinity-based separations in bioanalysis. J Chromatogr B 1021:1–2CrossRefGoogle Scholar
  134. Manique MC, Faccini CS, Onorevoli B, Benvenutti EV, Caramão EB (2012) Rice husk ash as an adsorbent for purifying biodiesel from waste frying oil. Fuel 92:56–61CrossRefGoogle Scholar
  135. Mänttäri M, van der Bruggen B, Nyström M (2013) Nanofiltration. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United KingdomCrossRefGoogle Scholar
  136. Manuale D, Mazzieri V, Torres G, Vera C, Yori J (2011) Non-catalytic biodiesel process with adsorption-based refining. Fuel 90:1188–1196CrossRefGoogle Scholar
  137. Mata TM, Cardoso N, Ornelas M, Neves S, Caetano NS (2011) Evaluation of two purification methods of biodiesel from beef tallow, pork lard, and chicken fat. Energy Fuels 25:4756–4762CrossRefGoogle Scholar
  138. Mazzieri V, Vera C, Yori J (2008) Adsorptive properties of silica gel for biodiesel refining. Energy Fuels 22:4281–4284CrossRefGoogle Scholar
  139. Miga K, Stanczyk K, Sayag C, Brodzki D, Djéga-Mariadassou G (1999) Bifunctional behavior of bulk MoOxNy and nitrided supported NiMo catalyst in hydrodenitrogenation of indole. J Catal 183:63–68CrossRefGoogle Scholar
  140. Monnier J, Sulimma H, Dalai A, Caravaggio G (2010) Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Appl Catal A: General 382:176–180CrossRefGoogle Scholar
  141. Morgan T, Santillan-Jimenez E, Harman-Ware AE, Ji Y, Grubb D, Crocker M (2012) Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts. Chem Eng J 189:346–355CrossRefGoogle Scholar
  142. Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen K, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A: General 407:1–19CrossRefGoogle Scholar
  143. Moser BR (2012) Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel. Fuel 92:231–238CrossRefGoogle Scholar
  144. Mueanmas C, Prasertsit K, Tongurai C (2010) Transesterification of triolein with methanol in reactive distillation column: simulation studies. Int J Chem React Eng 8Google Scholar
  145. Muniyappa PR, Brammer SC, Noureddini H (1996) Improved conversion of plant oils and animal fats into biodiesel and co-product. Bioresource Technol 56:19–24CrossRefGoogle Scholar
  146. Nagy G, Pölczmann G, Kalló D, Hancsók J (2009) Investigation of hydrodearomatization of gas oils on noble metal/support catalysts. Chem Eng J 154:307–314CrossRefGoogle Scholar
  147. Nava R, Pawelec B, Castaño P, Álvarez-Galván M, Loricera C, Fierro J (2009) Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Appl Catal B: Environ 92:154–167CrossRefGoogle Scholar
  148. Neylon M, Choi S, Kwon H, Curry K, Thompson L (1999) Catalytic properties of early transition metal nitrides and carbides: n-butane hydrogenolysis, dehydrogenation and isomerization. Appl Catal A: General 183:253–263CrossRefGoogle Scholar
  149. Noori MS, Karimi K (2016a) Chemical and structural analysis of alkali pretreated pinewood for efficient ethanol production. RSC Adv 6:65683–65690CrossRefGoogle Scholar
  150. Noori MS, Karimi K (2016b) Detailed study of efficient ethanol production from elmwood by alkali pretreatment. Biochem Eng J 105:197–204CrossRefGoogle Scholar
  151. Parkash S (2003) Refining processes handbook. Gulf Professional Publishing, Burlington, United StatesGoogle Scholar
  152. Parvizsedghy R, Sadrameli SM, Towfighi Darian J (2015) Upgraded biofuel diesel production by thermal cracking of castor biodiesel. Energy Fuels 30:326–333CrossRefGoogle Scholar
  153. Pérez-Cisneros ES, Mena-Espino X, Rodríguez-López V, Sales-Cruz M, Viveros-García T, Lobo-Oehmichen R (2016) An integrated reactive distillation process for biodiesel production. Comput Chem Eng 91:233–246CrossRefGoogle Scholar
  154. Peroni M, Mancino G, Baráth E, Gutiérrez OY, Lercher JA (2016) Bulk and γ-Al2O3-supported Ni2P and MoP for hydrodeoxygenation of palmitic acid. Appl Catal B: Environ 180:301–311CrossRefGoogle Scholar
  155. Phimsen S, Kiatkittipong W, Yamada H, Tagawa T, Kiatkittipong K, Laosiripojana N, Assabumrungrat S (2016) Oil extracted from spent coffee grounds for bio-hydrotreated diesel production. Energy Convers Manag 126:1028–1036CrossRefGoogle Scholar
  156. Pittia P, Mastrocola D, Nicoli M (2005) Effect of colloidal properties of oil-in-water emulsions on ethanol liquid–vapour partition. Food Res Int 38:585–595CrossRefGoogle Scholar
  157. Poddar T, Jagannath A, Almansoori A (2015) Biodiesel production using reactive distillation: a comparative simulation study. Energy Procedia 75:17–22CrossRefGoogle Scholar
  158. Predojević ZJ (2008) The production of biodiesel from waste frying oils: a comparison of different purification steps. Fuel 87:3522–3528CrossRefGoogle Scholar
  159. Qin Y, Chen P, Duan J, Han J, Lou H, Zheng X, Hong H (2013) Carbon nanofibers supported molybdenum carbide catalysts for hydrodeoxygenation of vegetable oils. RSC Adv 3:17485–17491CrossRefGoogle Scholar
  160. Qiu Z, Zhao L, Weatherley L (2010) Process intensification technologies in continuous biodiesel production. Chem Eng Process: Process Intensif 49:323–330CrossRefGoogle Scholar
  161. Rahayu SS, Mindaryani A (2007) Optimization of biodiesel washing by water extraction. In: Proceedings of the world congress on engineering and computer science, San Francisco, United StatesGoogle Scholar
  162. Rantanen L, Linnaila R, Aakko P, Harju T (2005) NExBTL-biodiesel fuel of the second generation. SAE technical paperGoogle Scholar
  163. Rodríguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159–175CrossRefGoogle Scholar
  164. Rogers KA, Zheng Y (2016) Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: a review and new insights. Chemsuschem 9:1750–1772CrossRefGoogle Scholar
  165. Romero Y, Richard F, Brunet S (2010) Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: promoting effect and reaction mechanism. Appl Catal B: Environ 98:213–223CrossRefGoogle Scholar
  166. Rossi N, Derouiniot-Chaplain M, Jaouen P, Legentilhomme P, Petit I (2008) Arthrospira platensis harvesting with membranes: fouling phenomenon with limiting and critical flux. Bioresource Technol 99:6162–6167CrossRefGoogle Scholar
  167. Rossi N, Jaouen P, Legentilhomme P, Petit I (2004) Harvesting of cyanobacterium Arthrospira platensis using organic filtration membranes. Food Bioprod Process 82:244–250CrossRefGoogle Scholar
  168. Rostrup-Nielsen JR (2008) 13.11 steam reforming. In: Ertl G, Knozinger H, Schuth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, GermanyGoogle Scholar
  169. Rozmysłowicz B, Maki-Arvela P, Tokarev A, Leino A-R, Eränen K, Murzin DY (2012) Influence of hydrogen in catalytic deoxygenation of fatty acids and their derivatives over Pd/C. Ind Eng Chem Res 51:8922–8927CrossRefGoogle Scholar
  170. Ruddy DA, Schaidle JA, Ferrell III, JR, Wang J, Moens L, Hensley JE (2014) Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem 16:454–490CrossRefGoogle Scholar
  171. Russbueldt BM, Hoelderich WF (2009) New sulfonic acid ion-exchange resins for the preesterification of different oils and fats with high content of free fatty acids. Appl Catal A: General 362:47–57CrossRefGoogle Scholar
  172. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York, United StatesGoogle Scholar
  173. Saifuddin N, Chua K (2004) Production of ethyl ester (biodiesel) from used frying oil: optimization of transesterification process using microwave irradiation. Malays J Chem 6:77–82Google Scholar
  174. Salahi A, Gheshlaghi A, Mohammadi T, Madaeni SS (2010) Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater. Desalination 262:235–242CrossRefGoogle Scholar
  175. Saleh J, Dubé MA, Tremblay AY (2010a) Effect of soap, methanol, and water on glycerol particle size in biodiesel purification. Energy Fuels 24:6179–6186CrossRefGoogle Scholar
  176. Saleh J, Dubé MA, Tremblay AY (2011) Separation of glycerol from FAME using ceramic membranes. Fuel Process Technol 92:1305–1310CrossRefGoogle Scholar
  177. Saleh J, Tremblay AY, Dubé MA (2010b) Glycerol removal from biodiesel using membrane separation technology. Fuel 89:2260–2266CrossRefGoogle Scholar
  178. Satyarthi J, Chiranjeevi T, Gokak D, Viswanathan P (2013) An overview of catalytic conversion of vegetable oils/fats into middle distillates. Catal Sci Technol 3:70–80CrossRefGoogle Scholar
  179. Schlatter JC, Oyama ST, Metcalfe III, JE, Lambert Jr, JM (1988) Catalytic behavior of selected transition metal carbides, nitrides, and borides in the hydrodenitrogenation of quinoline. Ind Eng Chem Res 27:1648–1653CrossRefGoogle Scholar
  180. Schuchardt U, Sercheli R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9:199–210CrossRefGoogle Scholar
  181. Şenol O, Viljava T-R, Krause A (2005a) Hydrodeoxygenation of aliphatic esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalyst: the effect of water. Catal Today 106:186–189CrossRefGoogle Scholar
  182. Şenol O, Viljava T-R, Krause A (2005b) Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catal Today 100:331–335CrossRefGoogle Scholar
  183. Serrano M, Bouaid A, Martínez M, Aracil J (2013) Oxidation stability of biodiesel from different feedstocks: influence of commercial additives and purification step. Fuel 113:50–58CrossRefGoogle Scholar
  184. Shahbaz K, Mjalli F, Hashim M, Alnashef I (2011) Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Sep Purif Technol 81:216–222CrossRefGoogle Scholar
  185. Shahbaz K, Mjalli FS, Hashim M, Al-Nashef IM (2010) Using deep eutectic solvents for the removal of glycerol from palm oil-based biodiesel. J Appl Sci 10:3349–3354CrossRefGoogle Scholar
  186. Shi W, Li H, Su Y, Liu J (2016a) Biodiesel production by quaternized polysulfone membrane: experimental and kinetics model. Energy Procedia 104:402–406CrossRefGoogle Scholar
  187. Shi W, Li H, Zhou R, Zhang H, Du Q (2016b) Biodiesel production from soybean oil by quaternized polysulfone alkali-catalyzed membrane. Bioresource Technol 210:43–48CrossRefGoogle Scholar
  188. Simakova I, Rozmysłowicz B, Simakova O, Mäki-Arvela P, Simakov A, Murzin DY (2011) Catalytic deoxygenation of C18 fatty acids over mesoporous Pd/C catalyst for synthesis of biofuels. Top Catal 54:460–466CrossRefGoogle Scholar
  189. Simakova I, Simakova O, Mäki-Arvela P, Simakov A, Estrada M, Murzin DY (2009) Deoxygenation of palmitic and stearic acid over supported Pd catalysts: effect of metal dispersion. Appl Catal A: General 355:100–108CrossRefGoogle Scholar
  190. Simasatitkul L, Siricharnsakunchai P, Patcharavorachot Y, Assabumrungrat S, Arpornwichanop A (2011) Reactive distillation for biodiesel production from soybean oil. Korean J Chem Eng 28:649–655CrossRefGoogle Scholar
  191. Slade RC, Kizewski JP, Poynton SD, Zeng R, Varcoe JR (2012) Alkaline membrane fuel cells. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. Springer, New York, United StatesCrossRefGoogle Scholar
  192. Snåre M, Kubičková I, Mäki-Arvela P, Chichova D, Eränen K, Murzin DY (2008) Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel 87:933–945CrossRefGoogle Scholar
  193. Snåre M, Kubickova I, Mäki-Arvela P, Eränen K, Murzin DY (2006) Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind Eng Chem Res 45:5708–5715CrossRefGoogle Scholar
  194. Snåre M, Kubičková I, Mäki-Arvela P, Eränen K, Wärnå J, Murzin DY (2007) Production of diesel fuel from renewable feeds: kinetics of ethyl stearate decarboxylation. Chem Eng J 134:29–34CrossRefGoogle Scholar
  195. Snåre M, Mäki-Arvela P, Simakova I, Myllyoja J, Murzin DY (2009) Overview of catalytic methods for production of next generation biodiesel from natural oils and fats. Russian J Phys Chem B 3:1035–1043CrossRefGoogle Scholar
  196. Sotelo-Boyas R, Liu Y, Minowa T (2010) Renewable diesel production from the hydrotreating of rapeseed oil with Pt/Zeolite and NiMo/Al2O3 catalysts. Ind Eng Chem Res 50:2791–2799CrossRefGoogle Scholar
  197. Sousa L, Zotin J, da Silva VT (2012) Hydrotreatment of sunflower oil using supported molybdenum carbide. Appl Catal A: General 449:105–111CrossRefGoogle Scholar
  198. Srifa A, Faungnawakij K, Itthibenchapong V, Assabumrungrat S (2015) Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel. Chem Eng J 278:249–258CrossRefGoogle Scholar
  199. Srinivasan S (2009) The food v. fuel debate: A nuanced view of incentive structures. Renew Energy 34:950–954CrossRefGoogle Scholar
  200. Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today 153:1–68CrossRefGoogle Scholar
  201. Stellwagen DR, Bitter JH (2015) Structure–performance relations of molybdenum-and tungsten carbide catalysts for deoxygenation. Green Chem 17:582–593CrossRefGoogle Scholar
  202. Stöcker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47:9200–9211CrossRefGoogle Scholar
  203. Stojković IJ, Stamenković OS, Povrenović DS, Veljković VB (2014) Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renew Sustain Energy Rev 32:1–15CrossRefGoogle Scholar
  204. Tremblay A, Cao P, Dubé MA (2008) Biodiesel production using ultralow catalyst concentrations. Energy Fuels 22:2748–2755CrossRefGoogle Scholar
  205. Treybal RE (1980) Mass transfer operations, 3rd edn. McGraw-Hill, New York, United StatesGoogle Scholar
  206. Twaiq FA, Zabidi NA, Bhatia S (1999) Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts. Ind Eng Chem Res 38:3230–3237CrossRefGoogle Scholar
  207. UOP H G D (2017) UOP, Honeywell Green Diesel. Accessed 02 June 2017
  208. van der Graaf S, Schroën C, Boom R (2005) Preparation of double emulsions by membrane emulsification—a review. J Membr Sci 251:7–15CrossRefGoogle Scholar
  209. Van Gerpen J, Shanks B, Pruszko R, Clements D, Knothe G (2004) Biodiesel production technology: August 2002–January 2004, NREL/SR-510-36244. National Renewable Energy LaboratoryGoogle Scholar
  210. Veljković VB, Banković-Ilić IB, Stamenković OS (2015) Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification. Renew Sustain Energy Rev 49:500–516CrossRefGoogle Scholar
  211. Venkatesan S (2013) Adsorption. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester, United KingdomGoogle Scholar
  212. Vinh TQ, Loan NTT, Yang X-Y, Su B-L (2011) Preparation of bio-fuels by catalytic cracking reaction of vegetable oil sludge. Fuel 90:1069–1075CrossRefGoogle Scholar
  213. Wall J, van Gerpen J, Thompson J (2011) Soap and glycerin removal from biodiesel using waterless processes. Trans ASABE 54:535–541CrossRefGoogle Scholar
  214. Wang H, Yan S, Salley SO, Ng KS (2012) Hydrocarbon fuels production from hydrocracking of soybean oil using transition metal carbides and nitrides supported on ZSM-5. Ind Eng Chem Res 51:10066–10073CrossRefGoogle Scholar
  215. Wang H, Yan S, Salley SO, Ng KS (2013) Support effects on hydrotreating of soybean oil over NiMo carbide catalyst. Fuel 111:81–87CrossRefGoogle Scholar
  216. Wang J, Ge X, Wang Z, Jin Y (2001) Experimental studies on the catalytic distillation for hydrolysis of methyl acetate. Chem Eng Technol 24:155–159CrossRefGoogle Scholar
  217. Wang Y, Nie J, Zhao M, Ma S, Kuang L, Han X, Tang S (2010) Production of biodiesel from waste cooking oil via a two-step catalyzed process and molecular distillation. Energy Fuels 24:2104–2108CrossRefGoogle Scholar
  218. Wang Y, Wang X, Liu Y, Ou S, Tan Y, Tang S (2009) Refining of biodiesel by ceramic membrane separation. Fuel Process Technol 90:422–427CrossRefGoogle Scholar
  219. Wei C-Y, Huang T-C, Yu Z-R, Wang B-J, Chen H-H (2014) Fractionation for biodiesel purification using supercritical carbon dioxide. Energies 7:824–833CrossRefGoogle Scholar
  220. Wijffels RH, Barbosa MJ, Eppink MH (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioprod Biorefin 4:287–295CrossRefGoogle Scholar
  221. Yang C, Li R, Cui C, Liu S, Qiu Q, Ding Y, Wu Y, Zhang B (2016) Catalytic hydroprocessing of microalgae-derived biofuels: a review. Green Chem 18:3684–3699CrossRefGoogle Scholar
  222. Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, New Jersey, United StatesGoogle Scholar
  223. Yang Y, Chen J, Shi H (2013a) Deoxygenation of methyl laurate as a model compound to hydrocarbons on Ni2P/SiO2, Ni2P/MCM-41, and Ni2P/SBA-15 catalysts with different dispersions. Energy Fuels 27:3400–3409CrossRefGoogle Scholar
  224. Yang Y, Ochoa-Hernández C, de la Peña O’shea VCA, Coronado JM, Serrano DP (2012) Ni2P/SBA-15 as a hydrodeoxygenation catalyst with enhanced selectivity for the conversion of methyl oleate into n-octadecane. ACS Catal 2:592–598Google Scholar
  225. Yang Y, Ochoa-Hernández C, Pizarro P, Víctor A, Coronado JM, Serrano DP (2015) Influence of the Ni/P ratio and metal loading on the performance of NixPy/SBA-15 catalysts for the hydrodeoxygenation of methyl oleate. Fuel 144:60–70CrossRefGoogle Scholar
  226. Yang Y, Wang Q, Zhang X, Wang L, Li G (2013b) Hydrotreating of C18 fatty acids to hydrocarbons on sulphided NiW/SiO2–Al2O3. Fuel Process Technol 116:165–174CrossRefGoogle Scholar
  227. Yilmaz G, Jongboom R, Van Soest J, Feil H (1999) Effect of glycerol on the morphology of starch–sunflower oil composites. Carbohydr Polym 38:33–39Google Scholar
  228. Yori J, D’Ippolito S, Pieck C, Vera C (2007) Deglycerolization of biodiesel streams by adsorption over silica beds. Energy Fuels 21:347–353CrossRefGoogle Scholar
  229. Zarchin R, Rabaev M, Vidruk-Nehemya R, Landau MV, Herskowitz M (2015) Hydroprocessing of soybean oil on nickel-phosphide supported catalysts. Fuel 139:684–691CrossRefGoogle Scholar
  230. Zhao C, Brück T, Lercher JA (2013) Catalytic deoxygenation of microalgae oil to green hydrocarbons. Green Chem 15:1720–1739CrossRefGoogle Scholar
  231. Zhao H, Baker GA (2013) Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review. J Chem Technol Biotechnol 88:3–12CrossRefGoogle Scholar
  232. Zhu X, Lobban LL, Mallinson RG, Resasco DE (2011) Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. J Catal 281:21–29CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hamed Bateni
    • 1
    Email author
  • Alireza Saraeian
    • 1
  • Chad Able
    • 2
  • Keikhosro Karimi
    • 3
  1. 1.Department of Chemical and Biological EngineeringIowa State UniversityAmesUSA
  2. 2.Department of Chemical and Biomolecular EngineeringOhio UniversityAthensUSA
  3. 3.Department of Chemical EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations