Biodiesel pp 15-25 | Cite as

Biodiesel Production Systems: Reactor Technologies

  • Thomas Ernst MüllerEmail author
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 8)


The dwindling of fossil resources has prompted producers of fuels, fine chemicals, and polymers to switch from fossil carbon sources and search for renewable feedstock. Biomass holds one of the keys to this transition to a circular economy. In this context, biodiesel obtained by transesterification of natural oils with alcohols is gaining importance in the fuel sector. Various reactor concepts have been developed for the transesterification reaction. Depending on the scale of the biodiesel production plant, reactors with varying designs are operated in the batch, semi-batch mode, or continuously. In this chapter, the optimal reactor technologies are analyzed with respect to the stages the chemical conversion runs through. The initial reaction mixture of natural oil and methanol, the most common alcohol in biodiesel production, is characterized by a liquid–liquid two-phase system. The high polarity difference of natural oil and methanol leads to a mixability gap and formation of a natural oil-rich phase and a methanol-rich phase. The mass transfer of the reagents across the phase boundary is slow relative to the chemical reaction, thereby resulting in diffusion limitations. Various mixing technologies, such as sonication, and the use of microreactors are explored to overcome these diffusion limitations. Once the reaction is 15–20% complete, the reaction mixture becomes homogeneous, reducing the need for intensive mixing. As the reaction continues and higher conversions are obtained, the fatty acid methyl ester separates from glycerin. The two phases are separated and purified. Recent technologies for process intensification aim at enhancing mass and heat transfer at all stages of the reaction.


Biodiesel Reactor concepts Operation mode Two-phase system Diffusion limitations Reactive distillation 


  1. Anastas P, Eghbali N (2010) Chem Soc Rev 39:301–312CrossRefGoogle Scholar
  2. Arous F, Frikha F, Triantaphyllidou I-E, Aggelis G, Nasri M, Mechichi T (2016) J Clean Prod 133:899–909CrossRefGoogle Scholar
  3. Bhuiya MMK, Rasul MG, Khan MMK, Ashwath N, Azad AK, Hazrat MA (2016) Renew Sustain Energy Rev 55:1129–1146CrossRefGoogle Scholar
  4. Brennan L, Owende P (2010) Renew Sustain Energy Rev 14:557–577CrossRefGoogle Scholar
  5. Cao N, Zhang Y, Yang B, Wang Y, Zhang G (2016) Energy Sources Part A: Recovery Util Environ Eff 38:3354–3359CrossRefGoogle Scholar
  6. Chuah LF, Klemes JJ, Yusup S, Bokhari A, Akbar MM (2017) J Clean Prod 146:181–193CrossRefGoogle Scholar
  7. Demirbas A (2006) Energy Convers Manag 47:2271–2282CrossRefGoogle Scholar
  8. Demirbas A, Bafail A, Ahmad W, Sheikh M (2016) Energy Explor Exploit 34:290–318CrossRefGoogle Scholar
  9. Dimian AC, Bildea S (eds) (2008) Computer-aided design case studies. Wiley, Weinheim, pp 399–428Google Scholar
  10. Dimian AC, Rothenberg G (2016) Catal Sci Technol 6:6097–6108CrossRefGoogle Scholar
  11. Emig and Klemm (2005) Technische Chemie, Einführung in die Chemische Reaktionstechnik. Springer, BerlinGoogle Scholar
  12. Feasibility report small scale biodiesel production (2006) Illinois Waste Management and Research Center Champaign, ILGoogle Scholar
  13. Gerpen JV, Knothe G, Krahl J (eds) (2005) The biodiesel handbook. AOCS Press, Champaign, Ill, pp. 26–41Google Scholar
  14. Guan G, Kusakabe K, Moriyama K, Sakurai N (2008) Chem Eng Trans 14:237–244Google Scholar
  15. Gupta M, Paul S, Gupta R (2010) Curr Sci 99:1341–1360Google Scholar
  16. Hanh HD, Dong NT, Starvarache C, Okitsu K, Maeda Y, Nishimura R (2008) Energy Convers Manag 49:276–280CrossRefGoogle Scholar
  17. Harvey AP, Mackley MR, Stonestreet P (2001) Ind Eng Chem Res 40:5371–5377CrossRefGoogle Scholar
  18. He B, Gerpen JV (2016) Reactors for biodiesel production, eXtension Issues—Innovation—ImpactGoogle Scholar
  19. He B, Singh A, Thompson J (2005) Trans ASABE 48:2237–2243CrossRefGoogle Scholar
  20. He B, Singh A, Thompson J (2006) Trans ASABE 49:107–112CrossRefGoogle Scholar
  21. He B, Singh A, Thompson J (2007) Trans ASABE 50:123–128CrossRefGoogle Scholar
  22. Hihn J-Y, Doche M-L, Mandroyan A, Hallez L, Pollet BG (2012) Ultrasound for better reactor design. In: Chen D, Sharma SK, Mudhoo A (eds) Handbook on applications of ultrasound, pp 599–622Google Scholar
  23. Ilgen O, Akin AN (2012) Appl Catal B: Environ 126:342–346Google Scholar
  24. International A (2013) Standard test method for determination of total monoglycerides, total diglycerides, total triglycerides, and free and total glycerin in B-100 biodiesel methyl esters by gas chromatography, West Conshohocken, vol ASTM D6584Google Scholar
  25. Issariyakul T, Dalai AK (2012) Can J Chem Eng 90:342–350CrossRefGoogle Scholar
  26. Jessop PG, Trakhtenberg S, Warner J (2009) ACS symposium series, 1000 (Innovations in industrial and engineering chemistry), pp 401–436CrossRefGoogle Scholar
  27. van Kasteren JMN, Nisworo AP (2007) Resources Conserv Recycl 50:442–458Google Scholar
  28. Kumar N, Varun, Chauhan SR (2013) Renew Sustain Energy Rev 21Google Scholar
  29. Perego C, Ricci M (2012) Catal Sci Technol 2:1776–1786CrossRefGoogle Scholar
  30. Rooze J, Rebrov EV, Schouten JC, Keurentjes JTF (2013) Ultrason Sonochem 20:1–11CrossRefGoogle Scholar
  31. Saka S, Isayama Y (2009) Fuel 88:1307–1313CrossRefGoogle Scholar
  32. Šalić A, Zelić B (2011) goriva i maziva 50:85–110Google Scholar
  33. Sarma AK, Sarmah JK, Barbora L, Kalita P, Chatterjee S, Mahanta P, Goswami P (2008) Recent Pat Eng 2:47–58CrossRefGoogle Scholar
  34. Silva NLD, Rios LF, Maciel MRW, Filho RM (2013) Materials and processes for energy: communicating current research and technological developments. In: Méndez-Vilas A (ed) Formatex, pp 244–251Google Scholar
  35. Suryanto, Utomo WB, Marwan (2015) Int J Sci Res (IJSR) 4:103–106Google Scholar
  36. Suslick KS, Flannigan DJ (2008) Annu Rev Phys Chem 59:659–683CrossRefGoogle Scholar
  37. Sykioti EA, Assael MJ, Huber ML, Perkins RA (2013) J Phys Chem Ref Data 42:043101/043101–043101/043110Google Scholar
  38. Teixeira LSG, Assis JCR, Mendonça DR, Santos ITV, Guimarães PRB, Pontes LAM, Teixeira JSR (2009) Fuel Process Technol 90:1164–1166CrossRefGoogle Scholar
  39. Thompson J, He B (2007) Trans ASABE 50:161–165CrossRefGoogle Scholar
  40. Veljkovic VB, Avramovic JM, Stamenkovic OS (2012) Renew Sustain Energy Rev 16:1193–1209CrossRefGoogle Scholar
  41. Wei Y, Zhang J, Zhang M, Zhang Y (2014) Advances in materials and materials processing IV. In: Advanced materials research, Durnten-Zurich, Switzerland, vol 887–888, pp 501–504Google Scholar
  42. Wen D, Jiang H, Zhang K (2009a) Prog Nat Sci 19:273–284CrossRefGoogle Scholar
  43. Wen Z, Yu X, Tu ST, Yan J, Dahlquist E (2009b) Biores Technol 100:3054–3060CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chemical and Process EngineeringRheinische Fachhochschule KölnKölnGermany

Personalised recommendations