Biodiesel pp 219-239 | Cite as

“Omics Technologies” and Biodiesel Production

  • Reza Sharafi
  • Gholamreza Salehi JouzaniEmail author
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 8)


Biodiesel is being considered as a renewable fuel candidate to completely or partially replace fossil diesel. The most important challenge in development of different generations of biodiesel is input cost, low oil yield in the sources, and lack of efficient technologies for biodiesel production. Recent developments in next-generation sequencing technologies (NGS) and new “omics” methodologies have provided excellent opportunities for high-throughput functional genomic surveys in different organisms. In this context, different “Omics” technologies have been widely used to enhance the oil yield in oil-producing plants and microorganisms. This chapter reviews the existing studies revolving around new “Omics” technologies used to enhance the oil and biodiesel production in the promising plant for biodiesel production, Jatropha, as a sample.


Omics technologies Next-generation sequencing Oil yield Biodiesel 


  1. Agarwal M, Shrivastava N, Padh H (2010) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631CrossRefGoogle Scholar
  2. Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Al-Azwani EK, Chaluvadi S, Pontaroli AC, DeBarry J, Arondel V (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29(6):521–527CrossRefGoogle Scholar
  3. Balaman ŞY, Selim H (2015) Biomass to energy supply chain network design: An overview of models, solution approaches and applications. In: Handbook of bioenergy. Springer International Publishing, pp 1–35Google Scholar
  4. Basha SD, Sujatha M (2007) Inter and intra population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population specific SCAR markers. Euphytica 156:375–386CrossRefGoogle Scholar
  5. Basha SD, Sujatha M (2009) Genetic analysis of Jatropha species and interspecific hybrids of Jatropha curcas using nuclear and organelle specific markers. Euphytica 168:197–214CrossRefGoogle Scholar
  6. Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52(2):707–719CrossRefGoogle Scholar
  7. Cartagena JA, Seki M, Tanaka M, Yamauchi T, Sato S, Hirakawa H, Tsuge T (2015) Gene expression profiles in Jatropha under drought stress and during recovery. Plant Mol Biol Rep 33(4):1075–1087CrossRefGoogle Scholar
  8. Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43(10):956–963CrossRefGoogle Scholar
  9. Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EB (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28(9):951–956CrossRefGoogle Scholar
  10. Chen MS, Wang GJ, Wang RL, Wang J, Song SQ, Xu ZF (2011) Analysis of expressed sequence tags from biodiesel plant Jatropha curcas embryos at different developmental stages. Plant Sci 181(6):696–700CrossRefGoogle Scholar
  11. Ceasar SA, Ignacimuthu S (2011) Applications of biotechnology and biochemical engineering for the improvement of Jatropha and biodiesel: a review. Renew Sustain Energy Rev 15(9):5176–5185CrossRefGoogle Scholar
  12. Clarke J (2016) Quantitative trait locus mapping of oil yield and oil quality related traits in the biofuel crop Jatropha curcas. Doctoral dissertation, University of YorkGoogle Scholar
  13. Costa GGL, Cardoso KC, Del Bem LEV, Lima AC, Cunha MAS, de Campos-Leite L et al (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genom 11Google Scholar
  14. Costa GG, Cardoso KC, Del Bem LE, Lima AC, Cunha MA, de Campos-Leite L, Vicentini R, Papes F, Moreira RC, Yunes JA, Campos FA (2010b) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genom 11(1):462CrossRefGoogle Scholar
  15. de Azevedo Peixoto L, Laviola BG, Alves AA, Rosado TB, Bhering LL (2017) Breeding Jatropha curcas by genomic selection: a pilot assessment of the accuracy of predictive models. PLoS ONE 12(3):e0173368CrossRefGoogle Scholar
  16. Debnath M, Pandey M, Malik CP (2010) Analysing the potentiality of Jatropha using “Omics Technology”. J Pl Sci Res 26(1):29–51Google Scholar
  17. del Pilar Rodriguez M, Brzezinski R, Faucheux N, Heitz M (2016) Enzymatic transesterification of lipids from microalgae into biodiesel: a reviewGoogle Scholar
  18. Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50:14–34CrossRefGoogle Scholar
  19. Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3(1):43–52CrossRefGoogle Scholar
  20. Eswaran N, Parameswaran S, Sathram B, Anantharaman B, Kumar GRK, Tangirala SJ (2010) Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas. BMC Biotechnol 10:23CrossRefGoogle Scholar
  21. FAO (2007) Sustainable bioenergy: a framework for decision makers. United Nations EnergyGoogle Scholar
  22. FAO (2008) The state of food and agriculture 2008. Biofuels: prospects, risks and opportunities.
  23. Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102(5):1298–1315CrossRefGoogle Scholar
  24. Franco MC, Gomes KA, de Carvalho Filho MM, Harakava R, Carels N, Siqueira WJ, Latado RR, de Argollo Marques D (2016) Agrobacterium-mediated transformation of Jatropha curcas leaf explants with a fungal chitinase gene. Afr J Biotech 15(37):2006–2016CrossRefGoogle Scholar
  25. Franco MC, Marques DDA, Siqueira WJ, Latado RR (2014) Micropropagation of Jatropha curcas superior genotypes and evaluation of clonal fidelity by target region amplification polymorphism (TRAP) molecular marker and flow cytometry. Afr J Biotechnol 13(38)Google Scholar
  26. Grover A, Kumari M, Singh S, Rathode SS, Gupta SM, Pandey P, Gilotra S, Kumar D, Arif M, Ahmed Z (2014) Analysis of Jatropha curcas transcriptome for oil enhancement and genic markers. Physiol Mol Biol Plants 20(1):139–142CrossRefGoogle Scholar
  27. Grover A, Patade VY, Kumari M, Gupta SM, Arif M, Ahmed Z (2013) Omics approaches in biofuel production for a green environment. In: Press CRC (ed) OMICS: applications in biomedical, agricultural, and environmental sciences. Taylor and Francis Group, Boca Raton, pp 623–636CrossRefGoogle Scholar
  28. Gu K, Yi C, Tian D, Sangha JS, Hong Y, Yin Z (2012) Expression of fatty acid and lipid biosynthetic genes in developing endosperm of Jatropha curcas. Biotechnol Biofuels 5:47CrossRefGoogle Scholar
  29. Gu KY, Chiam H, Tian DS, Yin ZC (2011) Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas. Plant Sci 180(4):642–649CrossRefGoogle Scholar
  30. Gu K, Mao H, Yin Z (2014) Production of marker-free transgenic Jatropha curcas expressing hybrid Bacillus thuringiensis δ-endotoxin Cry1Ab/1Ac for resistance to larvae of tortrix moth (Archips micaceanus). Biotechnol Biofuels 7(1):68CrossRefGoogle Scholar
  31. Gu K, Tian D, Mao H, Wu L, Yin Z (2015) Development of marker-free transgenic Jatropha curcas producing curcin-deficient seeds through endosperm-specific RNAi-mediated gene silencing. BMC Plant Biol 15(1):242CrossRefGoogle Scholar
  32. Gupta P, Idris A, Mantri S, Asif MH, Yadav HK, Roy JK et al (2012) Discovery and use of single nucleotide polymorphic (SNP) markers in Jatropha curcas L. Mol Breed 30(3):1325–1335CrossRefGoogle Scholar
  33. Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52(1):146–160CrossRefGoogle Scholar
  34. Hirakawa H, Tsuchimoto S, Sakai H, Nakayama S, Fujishiro T, Kishida Y et al (2012) Upgraded genomic information of Jatropha curcas L. Plant Biotechnol 29(2):123–130CrossRefGoogle Scholar
  35. IEA (2004) Biofuels for transport, International Energy Agency. Accessed 17 July 2010
  36. Jaganath B, Subramanyam K, Mayavan S, Karthik S, Elayaraja D, Udayakumar R, Manickavasagam M, Ganapathi A (2014) An efficient in planta transformation of Jatropha curcas (L.) and multiplication of transformed plants through in vivo grafting. Protoplasma 251(3):591–601CrossRefGoogle Scholar
  37. Jain R, Coffey M, Lai K, Kumar A, MacKenzie S (2000) Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes. Biochem Soc Trans 28:959–960CrossRefGoogle Scholar
  38. Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS ONE 8(8):e71136CrossRefGoogle Scholar
  39. Jiang Q, Yen SH, Stiller J, Edwards D, Scott PT, Gresshoff PM (2017) Genetic, biochemical, and morphological diversity of the legume biofuel tree Pongamia pinnata. Plant Genet Genom Biotechnol 1(3):54–67. ISSN 2332-2012CrossRefGoogle Scholar
  40. Joshi M, Mishra A, Jha B (2011) Efficient genetic transformation of Jatropha curcas L. by microprojectile bombardment using embryo axes. Ind Crops Prod 33(1):67–77CrossRefGoogle Scholar
  41. Kim MJ, Yang SW, Mao HZ, Veena SP, Yin JL, Chua NH (2014) Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnol Biofuels 7(1):36CrossRefGoogle Scholar
  42. King AJ, Montes LR, Clarke JG, Itzep J, Perez CA, Jongschaap RE, Visser RG, van Loo EN, Graham IA (2015) Identification of QTL markers contributing to plant growth, oil yield and fatty acid composition in the oilseed crop Jatropha curcas L. Biotechnol Biofuels 8(1):160CrossRefGoogle Scholar
  43. Kircher M, Kelso J (2010) High-throughput DNA sequencing—concepts and limitations. BioEssays 32:524–536CrossRefGoogle Scholar
  44. Kole PR, Bhat KV, Chaudhury R, Malik SK (2015) Genetic variation among Jatropha curcas L. using dominant molecular marker collected from different agro-climatic regions of India. Indian J Genet 75(2):267–270CrossRefGoogle Scholar
  45. Kumar RS, Parthiban KT, Rao MG (2008) Molecular characterization of Jatropha genetic resources through inter-simple sequence repeat [ISSR] markers. Mol Biol Rep 36:1951–1956CrossRefGoogle Scholar
  46. Kumar N, Anand KV, Pamidimarri DS, Sarkar T, Reddy MP, Radhakrishnan T, Kaul T, Reddy MK, Sopori SK (2010) Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind Crops Prod 32(1):41–47CrossRefGoogle Scholar
  47. Laosatit K, Tanya P, Somta P, Ruang-Areerate P, Sonthirod C, Tangphatsornruang S, Juntawong P, Srinives P (2016) De novo transcriptome analysis of apical meristem of Jatropha. Plant Mol Biol Rep 34(4):786–793CrossRefGoogle Scholar
  48. Laviola BG, Rodrigues EV, Teodoro PE, de Azevedo Peixoto L, Bhering LL (2017) Biometric and biotechnology strategies in Jatropha genetic breeding for biodiesel production. Renew Sustain Energy Rev 76:894–904CrossRefGoogle Scholar
  49. Laviola BG, Alves AA, Rosado TB, Bhering LL, Formighieri EF, de Azevedo Peixoto L (2018) Establishment of new strategies to quantify and increase the variability in the Brazilian Jatropha genotypes. Ind Crop Prod 117:216–223CrossRefGoogle Scholar
  50. Li C, Ng A, Xie L, Mao H, Qiu C, Srinivasan R, Yin Z, Hong Y (2016) Engineering low phorbol ester Jatropha curcas seed by intercepting casbene biosynthesis. Plant Cell Rep 35(1):103–114CrossRefGoogle Scholar
  51. Li M, Li H, Jiang H, Pan X, Wu G (2008) Establishment of an Agrobacteriuim-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tissue Organ Cult 92(2):173–181CrossRefGoogle Scholar
  52. Li-Beisson Y, Peltier G (2013) Third-generation biofuels: current and future research on microalgal lipid biotechnology. OCL 20(6):D606CrossRefGoogle Scholar
  53. Lin Z, An J, Wang J, Niu J, Ma C, Wang L, Yuan G, Shi L, Liu L, Zhang J, Zhang Z (2017) Integrated analysis of 454 and Illumina transcriptomic sequencing characterizes carbon flux and energy source for fatty acid synthesis in developing Lindera glauca fruits for woody biodiesel. Biotechnol Biofuels 10(1):134CrossRefGoogle Scholar
  54. Liu P, Wang C, Li L, Sun F, Liu P, Yue G (2011) Mapping QTLs for oil traits and eQTLs for oleosin genes in Jatropha. BMC Plant Biol 11(1):132CrossRefGoogle Scholar
  55. Liu Y, Yang Y, Yin X, Li L, Zhu H, Lu J, Shi Y (2017) Expression of JcFATA gene in Jatropha curcas and its promoter cloning and analysis. J Agric Biotechnol 25(2):214–221Google Scholar
  56. Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H et al (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77CrossRefGoogle Scholar
  57. Lorenz AJ, Smith KP, Jannink J-L (2012) Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci 52(4):1609–1621CrossRefGoogle Scholar
  58. Maisonneuve S, Bessoule J-J, Lessire R, Delseny M, Roscoe TJ (2010) Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol 152:670–684CrossRefGoogle Scholar
  59. Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem 6:287–303CrossRefGoogle Scholar
  60. Mastan SG, Rathore MS, Ghosh A (2016) Molecular characterization of genetic and epigenetic divergence in selected Jatropha curcas L. germplasm using AFLP and MS-AFLP markers. Plant Gene 8:42–49CrossRefGoogle Scholar
  61. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829. pmid:11290733Google Scholar
  62. Misra P, Toppo DD, Mishra MK, Saema S, Singh G (2012) Agrobacterium tumefaciens-mediated transformation protocol of Jatropha curcas L. using leaf and hypocotyl segments. J Plant Biochem Biotechnol 21(1):128–133CrossRefGoogle Scholar
  63. Moniruzzaman M, Yaakob Z, Khatun R (2016) Biotechnology for Jatropha improvement: a worthy exploration. Renew Sustain Energy Rev 54:1262–1277CrossRefGoogle Scholar
  64. Montes JM, Melchinger AE (2016) Domestication and Breeding of Jatropha curcas L. Trends Plant Sci 21(12):1045–1057CrossRefGoogle Scholar
  65. Montes JM, Technow F, Martin M, Becker K (2014) Genetic diversity in Jatropha curcas L. assessed with SSR and SNP markers. Diversity 6(3):551–566CrossRefGoogle Scholar
  66. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5):255–264CrossRefGoogle Scholar
  67. Mudalkar S, Golla R, Ghatty S, Reddy AR (2014) De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Mol Biol 84(1–2):159–171CrossRefGoogle Scholar
  68. Najafi G, Ghobadian B, Tavakoli T, Yusaf T (2009) Potential of bioethanol production from agricultural wastes in Iran. Sustain Energy Rev, Renew. Scholar
  69. Nanasato Y, Kido M, Kato A, Ueda T, Suharsono S, Widyastuti U, Tsujimoto H, Akashi K (2015) Efficient genetic transformation of Jatropha curcas L. by means of vacuum infiltration combined with filter-paper wicks. In Vitro Cell Dev Biol-Plant 51(4):399–406CrossRefGoogle Scholar
  70. Natarajan P, Kanagasabapathy D, Gunadayalan G, Panchalingam J, Sugantham PA, Singh KK, Madasamy P (2010) Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genom 11(1):606CrossRefGoogle Scholar
  71. Natarajan P, Parani M (2011) De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing. BMC Genomics 12(1):191Google Scholar
  72. Pamidimarri DVNS, Pandya N, Reddy MP, Radhakrishnan T (2008a) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP Genetic divergence and phylogenic analysis of genus Jatropha. Mol Biol Rep 36:901–907CrossRefGoogle Scholar
  73. Pamidimarri DVNS, Singh S, Mastan SG, Patel J, Reddy MP (2008b) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36:1357–1364CrossRefGoogle Scholar
  74. Pamidimarri DS, Reddy MP (2014) Phylogeography and molecular diversity analysis of Jatropha curcas L. and the dispersal route revealed by RAPD, AFLP and nrDNA-ITS analysis. Mol Biol Rep 41(5):3225–3234CrossRefGoogle Scholar
  75. Pan J, Fu Q, Xu ZF (2010) Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin selection. Afr J Biotech 9(39):6477–6481Google Scholar
  76. Patade VY, Khatri D, Kumar K, Grover A, Kumari M, Gupta SM, Kumar D, Nasim M (2014) RNAi mediated curcin precursor gene silencing in Jatropha (Jatropha curcas L.). Mol Biol Rep 41(7):4305–4312CrossRefGoogle Scholar
  77. Pioto F, Costa RS, França SC, Gavioli EA, Bertoni BW, Zingaretti SM (2015) Genetic diversity by AFLP analysis within Jatropha curcas L. populations in the State of São Paulo, Brazil. Biomass Bioenergy 80:316–320CrossRefGoogle Scholar
  78. Pootakham W, Jomchai N, Ruang-areerate P, Shearman JR, Sonthirod C, Sangsrakru D, Tragoonrung S, Tangphatsornruang S (2015) Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 105(5):288–295CrossRefGoogle Scholar
  79. Purkayastha J, Sugla T, Paul A, Solleti SK, Mazumdar P, Basu A, Mohommad A, Ahmed Z, Sahoo L (2010) Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biol Plant 54(1):13–20CrossRefGoogle Scholar
  80. Qu J, Mao HZ, Chen W, Gao SQ, Bai YN, Sun YW, Geng YF, Ye J (2012) Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid. Biotechnol Biofuels 5(1):10CrossRefGoogle Scholar
  81. Ram SG, Parthiban KT, Kumar RS, Thiruvengadam V, Paramathma M (2008) Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resources Crop Evol 55:803–809CrossRefGoogle Scholar
  82. Ranade SA, Srivastava AP, Rana TS, Srivastava J, Tuli R (2008) Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods. Biomass Bioenergy 32:533–540CrossRefGoogle Scholar
  83. Raposo RS, Souza IGB, Veloso MEC, Kobayashi AK, Laviola BG, Diniz FM (2014) Development of novel simple sequence repeat markers from a genomic sequence survey database and their application for diversity assessment in Jatropha curcas germplasm from Guatemala. Genet Mol Res 13(3):6099–6106CrossRefGoogle Scholar
  84. Raupach MJ, Amann R, Wheeler QD, Roos C (2016) The application of “-omics” technologies for the classification and identification of animals. Org Divers Evol 16(1):1–12CrossRefGoogle Scholar
  85. Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18(1):65–76CrossRefGoogle Scholar
  86. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183CrossRefGoogle Scholar
  87. Sharma N, Anderson M, Kumar A, Zhang Y, Giblin EM, Abrams SR et al (2008) Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts. BMC Genom 9:619CrossRefGoogle Scholar
  88. Silva-Junior O, Rosado T, Laviola B, Pappas M, Pappas G, Grattapaglia D (2011) Genome-wide SNP discovery from a pooled sample of accessions of the biofuel plant Jatropha curcas based on whole-transcriptome Illumina resequencing. BMC Proc 5:P57CrossRefGoogle Scholar
  89. Singh R, Ong-Abdullah M, Low ETL, Manaf MAA, Rosli R, Nookiah R, Ooi LCL, Ooi SE, Chan KL, Halim MA, Azizi N (2013) Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature 500(7462):335–339CrossRefGoogle Scholar
  90. Staton SE, Bakken BH, Blackman BK, Chapman MA, Kane NC, Tang S, Ungerer MC, Knapp SJ, Rieseberg LH, Burke JM (2012) The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Plant J 72(1):142–153CrossRefGoogle Scholar
  91. Schneider MV, Orchard S (2011) Omics technologies, data and bioinformatic principles. Methods Mol Biol 719:3–30CrossRefGoogle Scholar
  92. Sun F, Liu P, Ye J, Lo L, Cao S, Li L, Yue G, Wang C (2012) An approach for Jatropha improvement using pleiotropic QTLs regulating plant growth and seed yield. Biotechnol Biofuels 5(1):42CrossRefGoogle Scholar
  93. Tabatabaei M, Tohidfar M, Salehi Jouzani G, Safarnejad M, Pazouki M (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renew Sustain Energy Rev 15(4):1918–1927CrossRefGoogle Scholar
  94. Taher H, Al‐Zuhair S (2016) The use of alternative solvents in enzymatic biodiesel production: a review. Biofuels Bioprod BiorefinGoogle Scholar
  95. Tang MJ, Sun JW, Liu Y, Chen F, Shen SH (2007) Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol Biol 63(3):419–428CrossRefGoogle Scholar
  96. Tatikonda L, Wani SP, Kannan S, Naresh B, Hoisington DA, Devi P (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L. A biofuel plant. Plant Sci 176:505–513CrossRefGoogle Scholar
  97. Tian Y, Zhang M, Hu X, Wang L, Dai J, Xu Y, Chen F (2016) Over-expression of CYP78A98, a cytochrome P450 gene from Jatropha curcas L., increases seed size of transgenic tobacco. Electron J Biotechnol 19:15–22CrossRefGoogle Scholar
  98. Tong L, Shu-Ming P, Wu-Yuan D, Dan-Wei M, Ying X, Meng X, Fang C (2006) Characterization of a new stearoyl-acyl, carrier protein desaturase gene from Jatropha curcas. Biotechnol Lett 28:657–662CrossRefGoogle Scholar
  99. Tong L, Wei MD, Ying X, Yuan DW, Meng X, Wei QR, Fang C (2007) Cloning and characterization of a stearoyl-ACP desaturase gene from Jatropha curcas. J Shanghai Univ (English Edition) 11(2):182–188CrossRefGoogle Scholar
  100. Tsuchimoto S, Cartagena J, Khemkladngoen N, Singkaravanit S, Kohinata T, Wada N, Sakai H, Morishita Y, Suzuki H, Shibata D, Fukui K (2012) Development of transgenic plants in Jatropha with drought tolerance. Plant Biotechnol 29(2):137–143CrossRefGoogle Scholar
  101. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technologies. Trends Genet 30:418–426CrossRefGoogle Scholar
  102. Verma KC, Singh US, Verma SK, Gaur AK (2016) Molecular profiling of Jatropha curcas L. collected from different geographical locations of India. Int J Ambient Energy 37(1):20–23CrossRefGoogle Scholar
  103. Wang CM, Liu P, Yi CX, Gu KY, Sun F, Li L et al (2011a) A first generation microsatellite- and SNP-based linkage map of Jatropha. PLoS ONE 6(8):e3632Google Scholar
  104. Wang L, Gao J, Qin X, Shi X, Luo L, Zhang G, Yu H, Li C, Hu M, Liu Q, Xu Y (2015) JcCBF2 gene from Jatropha curcas improves freezing tolerance of Arabidopsis thaliana during the early stage of stress. Mol Biol Rep 42(5):937–945CrossRefGoogle Scholar
  105. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S (2011b) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039CrossRefGoogle Scholar
  106. Wang CM, Liu P, Sun F, Li L, Liu P, Ye J, Yue GH (2012) Isolation and identification of miRNAs in Jatropha curcas. Int J Biological Sci 8(3):418CrossRefGoogle Scholar
  107. Wu L, Goh ML, Tian D, Gu K, Hong Y, Yin Z (2017) Isolation and characterization of curcin genes with distinct expression patterns in leaves and seeds of Jatropha curcas L. Plant Gene 9:34–44CrossRefGoogle Scholar
  108. Wu P, Zhou C, Cheng S, Wu Z, Lu W, Han J, Chen Y, Chen Y, Ni P, Wang Y, Xu X (2015) Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J 81(5):810–821CrossRefGoogle Scholar
  109. Xiong W, Wei Q, Wu P, Zhang S, Li J, Chen Y, Li M, Jiang H, Wu G (2017) Molecular cloning and characterization of two β-ketoacyl-acyl carrier protein synthase I genes from Jatropha curcas L. J Plant Physiol 214:152–160CrossRefGoogle Scholar
  110. Yadav HK, Ranjan A, Asif MH, Mantri S, Sawant SV Tuli R (2011) EST-derived SSR markers in Jatropha curcas L. development, characterization, polymorphism, and transferability across the species/genera. Tree Genet & Genomes 7(1):207–219Google Scholar
  111. Yang J, Yang MF, Wang D, Chen F, Shen SH (2010) JcDof1, a Dof transcription factor gene, is associated with the light-mediated circadian clock in Jatropha curcas. Physiologia Plantarum 139(3):324–334Google Scholar
  112. Yang D, Zhang H, Peng K, Chen L, He H, Huang X, Qin J, He G, Zhang D (2016) Differential gene regulation of lipid synthesis in the developing seeds of two biodiesel tree species, Jatropha and Vernicia. Int J Agric Biol 18(6)Google Scholar
  113. Yang H, Yu C, Yan J, Wang X, Chen F, Zhao Y, Wei W (2014) Overexpression of the Jatropha curcas JcERF1 gene coding an AP2/ERF-Type transcription factor increases tolerance to salt in transgenic tobacco. Biochemistry (Moscow) 79(11):1226–1236CrossRefGoogle Scholar
  114. Ye J, Hong Y, Qu J, Wang C (2013) Improvement of Jatropha curcas oil by genetic transformation. In: Jatropha, challenges for a new energy crop. Springer, New York, pp 547–562Google Scholar
  115. Ye J, Qu J, Mao HZ, Ma ZG, Rahman NE, Bai C, Chen W, Jiang SY, Ramachandran S, Chua NH (2014) Engineering geminivirus resistance in Jatropha curcas. Biotechnol Biofuels 7(1):149CrossRefGoogle Scholar
  116. Yu N, Xiao WF, Zhu J, Chen XY, Peng CC (2015) The Jatropha curcas KASIII gene alters fatty acid composition of seeds in Arabidopsis thaliana. Biol Plant 59(4):773–782CrossRefGoogle Scholar
  117. Yue GH, Sun F, Liu P (2013) Status of molecular breeding for improving Jatropha curcas and biodiesel. Renew Sustain Energy Rev 26:332–343CrossRefGoogle Scholar
  118. Zampieri E, Chiapello M, Daghino S, Bonfante P, Mello A (2016) Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles. Sci Rep 6Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Microbial BiotechnologyAgricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO)KarajIran

Personalised recommendations