Skip to main content

Modeling and Optimization of Flexible Manufacturing Systems: A Stochastic Approach

  • Conference paper
  • First Online:
Intelligent Computing & Optimization (ICO 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 866))

Included in the following conference series:

Abstract

This document describes the development an analysis of the main optimization methods used in flexible manufacturing systems (FMS) problems. The results are obtained from a random sample of more than one hundred documents published from 1986 to 2018 dedicated to the optimization of FMS. These are classified by their applications in the most significant fields of this area in analytical methods and heuristic methods. The discussion is based on the importance of this branch of engineering in the economic activity of a country and is motivation to continue doing research in it. The analysis also addresses some aspects of computational complexity found in ordinary optimization as well as the most common NP-hard problems of the FMS. The statistical results obtained are presented and the virtual future of the FMS is projected as well as the new challenges and opportunities to venture into this important field of human activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ah-kioon, S., Bulgak, A.A., Bektas, T.: Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration. Eur. J. od Oper. Res. 192(2), 414–428 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albadawi, Z., Bashir, H.A., Chen, M.: A mathematical approach for the formation of manufacturing cells. Comput. Ind. Eng. 48(1) (2005)

    Article  Google Scholar 

  3. Al-Tahat, M.D., Bataineh, K.M.: Statistical analyses and modeling of the implementation of agile manufacturing tactics in industrial firms (2012)

    Article  Google Scholar 

  4. Sadrazadeh, A.: A genetic algorithm with the heuristic procedure to solve the multi-line layout problem. Comput. Ind. Eng. 1055–1064 (2012)

    Google Scholar 

  5. Andrade, A., Santoro, M., De Tomi, G.: Mathematical model and supporting algorithm to aid the sequencing and scheduling of mining with loading equipment allocation. Rem: Rev. Esc. Minas 67(4), 379–387 (2014). Ouro Preto

    Google Scholar 

  6. Andreas Hees, A., Reinhart G.: Approach for production planning in reconfigurable manufacturing systems. In: 9th CIRP Conference on Intelligent Computation in Manufacturing Engineering—CIRP ICME 2014 (2015)

    Article  Google Scholar 

  7. Ariafara, S., Ismail, N.: An improved algorithm for layout design in cellular manufacturing systems. J. Manuf. Syst. 28(4), 132–139 (2009)

    Article  Google Scholar 

  8. Arostegui, M., Kadipasaoglu, S., Khumawala, B.: An empirical comparison of Tabu search, simulated annealing and genetic algorithms for facilities location problems. J. Prod. Econ. 103, 742–754 (2006)

    Article  Google Scholar 

  9. Barla, S.B.: A case study of supplier selection for lean supply by using a mathematical model. Logistics Inf. Manag. 16(6), 451–459 (2003)

    Article  Google Scholar 

  10. Baruah, S.: A scheduling model inspired by control theory. In: Proceedings of the 6th International Real-Time Scheduling Open Problems Seminar (RTSOPS) (2015)

    Google Scholar 

  11. Braglia, M., Multi-attribute classification method for spare parts inventory management. J. Qual. Maint. Eng. 10(1) (2004)

    Article  Google Scholar 

  12. Brah, S., Hunsucker, J., Shah, J.: Mathematical modeling of scheduling problems. J. Inf. Optim. Sci. 12 (1991)

    Article  MATH  Google Scholar 

  13. Brenner, S.C., Carstensen, C.: Finite Element Methods. Wiley Online Library (2017)

    Google Scholar 

  14. Burnhual, S., Deb, S.: Scheduling optimization of flexible manufacturing systems using cuckoo search-based approach. Int. J. Adv. Manuf. Technol. 64(5–8) (2013)

    Google Scholar 

  15. Buzacott, J.A., Shanthikumar, J.G.: Stochastic models of manufacturing systems. Prentice Hall EEUU, New York (1993)

    Google Scholar 

  16. Cao, D., Chen, M.: A mixed integer programming model for a two line CONWIP-based production and assembly system. Int. J. Prod. Econ. 95(3), 317–326 (2005)

    Article  Google Scholar 

  17. Cárdenas, G.E., Pérez-Lechuga, G., Tuoh-Mora, J.C., Medina-Marín, J.: Obtaining the optimal short-term hydrothermal coordination scheduling: a stochastic view point. Appl. Math. Comput. Sci. 3(4), 361–379 (2012). ISSN 0976–1586

    Google Scholar 

  18. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer, New York (2010)

    Google Scholar 

  19. Chang, C.-T., Teng, J-.T., Goyal, S.K.: Inventory lot-size models under trade credits: a review. Asia Pac. J. Oper. Res. 25(01), 89–112 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chin, C., Chen, W., Chien, F., Wang, J.J.: An AHP-based approach to ERP system selection. Int. J. Prod. Econ. 96(1, 18), 47–62 (2005)

    Google Scholar 

  21. Choudhary, S.K.: Study about the types of information technology service for supply chain. In: Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II WCECS 2016, 19–21 October 2016, San Francisco, USA (2016)

    Google Scholar 

  22. De Carlo, F., Arlo, M.A. et.al.: Layout design for a low capacity manufacturing line: a case study. Int. J. Eng. Bus. (2013)

    Google Scholar 

  23. Ekşioğlu, S.D., Acharya, A., Leightley, L.E., Arora, S.: Analyzing the design and management of biomass-to-biorefinery supply chain. Comput. Ind. Eng. 57(4), 1342–1352 (2009)

    Article  Google Scholar 

  24. Faizrahnemoon, M.: Mathematical modelling of the scheduling of a production line at SKF, Master’s Thesis, University of Gothenburg (2012)

    Google Scholar 

  25. Fantahun, M.D., Chen, M.: A comprehensive mathematical model for the design of cellular manufacturing systems. Int. J. Prod. Econ. 103(2), 767–783 (2006)

    Article  Google Scholar 

  26. Fanti, M.P., Zhou, M.: Deadlock control methods in automatic manufacturing systems. IEEE Trans. Syst. 34(1) (2004)

    Article  Google Scholar 

  27. Ghapanchi, A., Jafarzadeh, M.H., Khakbaz, M.-H.: Fuzzy-data envelopment analysis approach to enterprise resource planning system analysis and selection. Int. J. Inform. Syst. Change Manage. 3(2) (2008)

    Article  Google Scholar 

  28. Ghosha, T., Senguptaa, S., Chattopadhyayb, M., Dana, P.K.: Meta-heuristics in cellular manufacturing: a state-of-the-art review. Int. J. Ind. Eng. Comput. (2011)

    Google Scholar 

  29. Ghosh, I.: An Intelligent hybrid multi criteria decision making technique to solve a plant layout problem. Int. J. Ind. Eng. Res. Dev. (IJIERD) 5(3), 13–23 (2014)

    Google Scholar 

  30. Gumus, A.T., Guneri, A.F.: A multi-echelon inventory management framework for stochastic and fuzzy supply chains. Expert Syst. Appl. 36(3), 5565–5575 (2009). Part 1

    Article  Google Scholar 

  31. Hao, Q., Shen, W.: Implementing a hybrid simulation model for a Kanban-based material handling system. Manufacturing 24(5), 635–646 (2008)

    Google Scholar 

  32. Hong, M., Payandeh, S., Gruver, W.A.: Modeling and analysis of flexible fixturing systems for agile manufacturing. In: IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (1996)

    Google Scholar 

  33. How does additive manufacturing work? https://www.ge.com/additive/additive-manufacturing

  34. Jarimo, T., Pulkkinen, U.: A multi-criteria mathematical programming model for agile virtual organization creation. https://link.springer.com/content/pdf/10.1007%2F0-387-29360-4_13.pdf

  35. Jin. J.M.: The Finite Element Method in Electromagnetic, 3rd edn. Wiley (2014)

    Google Scholar 

  36. Karsak, E.E., Özogul, C.O.: An integrated decision-making approach for ERP system selection. Expert Syst. Appl. 36(1), 660–667 (2009)

    Article  Google Scholar 

  37. Kia, R., Baboli, A., Javadian, N., Tavakkoli-Moghaddam, R., Kazemi, M.: Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing. Comput. Oper. Res. (2012)

    Google Scholar 

  38. Kilic, H.S., Zaim, S.M., Delen, D.: Development of a hybrid methodology for ERP system selection: the case of Turkish Airlines. Decis. Support Syst. 66, 82–92 (2014)

    Article  Google Scholar 

  39. Khusna, D., Zawiah, S., Jamasri, J., Aoyama H.: A proposed study on facility planning and design in manufacturing process. In: Proceedings of the International Multiconference of Engineers and Computers Scientists 2010, vol. 3, Hong Kong (2010)

    Google Scholar 

  40. Lall, V., Teyarachakul, S.: Enterprise resource planning (ERP) system selection: a data envelopment anaysis (DEA) approach. J. Comput. Inf. Syst. 47(1) 2006 (2016)

    Google Scholar 

  41. Lenny Koh, S.C., Mike Simpson, M.: Could enterprise resource planning create a competitive advantage for small businesses? Benchmarking Int. J. 14(1), 59–76 (2007)

    Article  Google Scholar 

  42. Lee, Y.H., Golinska, P., Wu, J.Z.: Mathematical models for supply chain management. Mathematical Problems in Engineering, vol. 2016, p. 4. Hindawi Publishing Corporation (2016). Article ID 6167290

    Google Scholar 

  43. Li, P., Shi, K., Zhang, J.: Modeling Agile manufacturing cell using object-oriented timed petri net. http://keshi.ubiwna.org/paper/Modeling%20Agile%20Manufacturing%20Cell%20using%20Object-Oriented%20Timed%20Petri%20net.pdf

  44. Li, Z., Wu, N., Zhou, M.: Deadlock control of automatic manufacturing systems based on Petri Nets—A literature review. IEEE Trans. Syst. 42(4) (2012)

    Google Scholar 

  45. Li X., Guo, S., Liu, Y., Du, B., Wang, L.: A production planning model for make-to-order foundry flow shop with capacity constraint. Math. Probl. Eng. 2017 (2017). Article ID 6315613

    Google Scholar 

  46. Liao, X., Li, Y., Lu, B.: A model for selecting an ERP system based on linguistic information processing. Inf. Syst. 32(7), 1005–1017 (2007)

    Article  Google Scholar 

  47. Liao, Y., Deschamps, F., Loures, E.F., Ramos, L.F.P.: Past, present and future of Industry 4.0- a systematic literature review and research agenda proposal. Int. J. Prod. Res. 55(12) 2017 (2017)

    Article  Google Scholar 

  48. López-Ortega, O., Pérez-Lechuga, G.: An express meta model for sharing and exchanging flexible manufacturing resources. In: World Congress Manufacturing, Rochester Institute of Technology, Rochester, New York, USA (2001)

    Google Scholar 

  49. Madhav, P.A.: Mathematical Modelling of Flexible Manufacturing Systems. University of Windsor (1986)

    Google Scholar 

  50. Madavhi, I., A., Paydar, Solymanpur, M., Heidarzade, A.: Genetic algorithm approach for solving a cell formation problem in cellular manufacturing. Expert Syst. Appl. (2009)

    Google Scholar 

  51. Madavhi, I., Aalaei, A., Paydar, M.M., Solymanpur, M.: Designing a mathematical model for dynamic cellular manufacturing systems considering production planning and worker assignment (2010)

    Google Scholar 

  52. Mandal, N.K., Roy, T.K., Maitic, M.: Multi-objective fuzzy inventory model with three constraints: a geometric programming approach. Fuzzy Sets Syst. 150(1), 87–106 (2005)

    Article  MathSciNet  Google Scholar 

  53. Maniya, K., Bhatt, M.G.: An alternative multiple attribute decision making methodology for solving optimal facility layout design selection problems. Comput. Indus. Eng. 61, 542–549 (2011)

    Article  Google Scholar 

  54. Manzhirov, A.V., Lychev, S.A.: Mathematical modeling of additive manufacturing technologies. In: Proceedings of the World Congress on Engineering 2014, WCE 2014, vol. II, London, UK (2014)

    Google Scholar 

  55. Manzhirov, A.V.: Mechanical design of viscoelastic parts fabricated using additive manufacturing technologies. In: 2015 Proceedings of the World Congress on Engineering, WCE 2015, vol. II, London, UK (2015)

    Google Scholar 

  56. Method for controlled optimization of enterprise planning models. https://translate.google.com/?hl=es#es/en/Method%20for%20controlled%20optimization%20of%20enterprise%20planning%20models

  57. Mula, J., Poler, R., García, J.P.: MRP with flexible constraints: a fuzzy mathematical programming approach. Fuzzy Sets Syst. 157(1), 74–97 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. Mula, J., Poler, R., García, J.P.: Models for production planning under uncertainty: a review. Int. J. Prod. Econ. 103(1), 271–285 (2006)

    Article  Google Scholar 

  59. Mula, J., Peidro, D., Diaz-Madroñero, M., Vicens, E.: Mathematical programming models for supply chain production and transport planning. Eur. J. Oper. Res. 204(3), 377–390 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Norouzi, G., Heydari, M., Noory, S., Bagherpour, M.: Developing a mathematical model for scheduling and determining success probability of research projects considering complex-fuzzy networks. J. Appl. Math. 2015 (2015). Article ID 809216

    Article  MathSciNet  Google Scholar 

  61. Omar, M., Sarker, R., Othman, W.A.M.: A just-in-time three-level integrated manufacturing system for linearly time-varying demand process. Appl. Math. Model. 37(2013), 1275–1281 (2013)

    Article  MATH  Google Scholar 

  62. Pérez, L.G., Gress, E.S.H., Karelyn, A., Orán, M.G.M.: Some efficiency measures in the operation of flexible manufacturing systems: a stochastic approach. In: Proceedings of the 2009 SIAM Conference on “Mathematics for Industry”, SIAM, EEUU, pp. 31–36 (2010)

    Google Scholar 

  63. Pérez-Lechuga, G., Flores-Rivera, C., Karelyn, A., Tarasenko, A.: A multi-period stochastic model to link the supply chain production planning in a manufacturing organization, Advances in science and statistics applications. 6(4) 255–283 (2011). ISSN 0974-6811

    Google Scholar 

  64. Pérez, L.G., Pérez, R.E., Venegas, M.F.: Stochastic optimization of manufacture systems by using Markov decision processes. In: Vasant, P., Weber, G., Dieu, V.N. (eds.) Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics, Engineering Science Reference, EEUU. IGI Global (2015)

    Google Scholar 

  65. Pérez, L.G., Bujari, A.A., Venegas, M.F.: Economic aspects of the production planning in lines of manufacturing under conditions of uncertainty. In: Ramírez, C.E.C., Venegas, M.F., Herrera, F. (eds.) Modeling of Economic and Financial Phenomena: A Contemporary Vision, Editorial Castdel, S.A. de C.V, Mexico (2017)

    Google Scholar 

  66. Pérez-Lechuga, G.: Optimal logistics strategy to distribute medicines in clinics and hospitals. J. Math. Ind. 8, 2 (2018)

    Article  MathSciNet  Google Scholar 

  67. Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming. Springer, New York (2006)

    MATH  Google Scholar 

  68. Rai, J.K., Xirouchakis, P.: Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components. Int. J. Mach. Tools Manuf. 48(6), 629–643 (2008)

    Article  Google Scholar 

  69. Raj, S.A., Sudheer, A., Vinodh, S., Anand, G.: A mathematical model to evaluate the role of agility enablers and criteria in a manufacturing environment. Int. J. Prod. Res. 51(19) (2013)

    Google Scholar 

  70. Roberts, I.A., Wang, C.J., Esterlein, R., Stanford, M., Mynors, D.J.: A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int. J. Mach. Tools Manuf. (2009)

    Google Scholar 

  71. Rosen, D.W.: Design for additive manufacturing: a method to explore unexplored regions of the design. https://pdfs.semanticscholar.org/101a/8f03ed20725ae71d30537e90f783a398e86f.pdf

  72. Rui, L., Xiaofei, Z., Guiwu, W.: Models for selecting an ERP system with hesitant fuzzy linguistic information. J. Intel. Fuzzy Syst. 26(5), 2155–2165 (2014)

    MathSciNet  MATH  Google Scholar 

  73. Savsar, M., Jawini, A.N.: Simulation analysis of just-in-time production systems. Int. J. Prod. Econ. 42(1), 67–78 (1995)

    Article  Google Scholar 

  74. Sawik, T.: Scheduling in Supply Chains Using Mixed Integer Programming. Wiley (2011)

    Google Scholar 

  75. Shah, K., Ripon, N., Glette, K., et. al.: Adaptive variable neighborhood search for solving multi- objective facility layout problem with unequal area facilities. Swarm Evol. Comput. (2012)

    Google Scholar 

  76. Shahabudeen, P., Krishnaiah, K., Narayanan, M.T.: Design of a Two-card dynamic Kanban system using a simulated annealing algorithm. Int. J. Adv. Manuf. Technol. 21(10–11), 754–759 (2003)

    Article  Google Scholar 

  77. Shapiro, J.F.: Mathematical programming models and methods for production planning and scheduling. In: Handbooks in Operations Research and Management Science, vol. 4, pp. 371–443 (1993)

    Google Scholar 

  78. Solymanpur, M., Vrat, P., Shankar, R.: Ant colony optimization algorithm to the inter-cell layout problem in cellular manufacturing. Eur. J. Oper. Res. 157(3), 592–606 (2004)

    Google Scholar 

  79. Sun, L., Heragu, S.S., Chen, L., Spearman, M.L., Simulation analysis of a multi-item MRP system based on factorial design. In: 2009 Proceedings of the Winter Simulation Conference (WSC), pp. 2107–2114 (2009)

    Google Scholar 

  80. Talluri, S., Narasimhan, R., Nairb, A.: Vendor performance with supply risk: A chance-constrained DEA approach. Int. J. Prod. Econ. 100(2), 212–222 (2006)

    Article  Google Scholar 

  81. Tayur, S., Ganeshan, R., Magazine, M.: Quantitative Models for Chain supply Management. Kluwer’s International Series (1999)

    Google Scholar 

  82. Thapa, G.: Optimization of just-in-time sequencing problems and supply chain logistics. Mälardalen University Press Dissertations No. 184 (2015). https://www.diva-portal.org/smash/get/diva2:851513/FULLTEXT01.pdf

  83. Urek, B., Kaya, O.: A mixed integer nonlinear programming model and heuristic solutions for location, inventory and pricing decisions in a closed loop supply chain. Comput. Oper. Res. 65, 93–103 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  84. Voss, S., Woodruff, D.: Connecting MRP, MRP II and ERP- supply chain production planning via optimization models, In: Greenberg, H.J. (ed.) Tutorials on Emerging Methodologies and Applications in Operations Research. Springer Science & Business Media (2006)

    Google Scholar 

  85. Wang, R.C.H., Liang, T.F.: Application of fuzzy multi-objective linear programming to aggregate production planning. Comput. Ind. Eng. 46(1), 17–41 (2004)

    Article  Google Scholar 

  86. What are automated manufacturing systems? https://connell-ind.com/what-are-automated-manufacturing-systems/

  87. What is agile manufacturing? https://translate.google.com/?hl=es#en/es/WHAT%20IS%20AGILE%20MANUFACTURING%3F%20Why%20is%20it%20an%20effective%20strategy%3F

  88. Wazed, M.A., Ahmed, S., Nukman, Y.: Mathematical models for multistage production under commonality and uncertainty. http://ebooks.asmedigitalcollection.asme.org/content.aspx?bookid=481&sectionid=38789428

  89. Wei, C.C.: Wang, J, J., A comprehensive framework for selecting an ERP system. Int. J. Project Manage. 22(2), 161–169 (2004)

    Article  MathSciNet  Google Scholar 

  90. Yadav, A., Jayswal, S.C.: Modelling of flexible manufacturing systems: a review. Int. J. Prod. Res. 56(7) (2017)

    Article  Google Scholar 

  91. Yazgan, H.R., Boran, S., Goztepe, K.: An ERP software selection process with using artificial neural network based on analytic network process approach. Expert Syst. Appl. 36(5), 9214–9222 (2009)

    Article  Google Scholar 

  92. Yazıcı, E., Büyüközkan, G., Baskak, M.: A new extended MILP MRP approach to production planning and its application in the jewelry industry. Math. Probl. Eng. 2016 (2016). Article ID 7915673

    Article  Google Scholar 

  93. Yilmaz, O.F., Suleiman, T. (eds.): Handbook of Research on Applied Optimization Methodologies in Manufacturing. IGI-Global (2018)

    Google Scholar 

  94. Yousefi, M., Hosseinioun, S.S., Taghikhah, F.: Determining optimum number of kanbans for workstations in a kanban-based manufacturing line using discrete-event simulation: a case of study. In: Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management, Istanbul, Turkey (2012)

    Google Scholar 

  95. Zhang, W., Chen, M.: A mathematical programming model for production planning using CONWIP. Int. J. Prod. Res. 39(12), 2001 (2010)

    Article  MATH  Google Scholar 

  96. Zhenyuan, J., Xiaohong, L., Wei, W., et al.: Design and implementation of lean facility layout system of a production line. Int. J. Ind. Eng. 18, 260–269 (2011)

    Google Scholar 

  97. Zhou, J., Yang, G., Tang, G.: The mathematical modeling of the mobile recharging facility vehicles’ scheduling and its genetic algorithm solution. In: IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) (2015)

    Google Scholar 

  98. Zhou, M., Dicesare, F.: Petri Net Synthesis for Discrete Event Control of Manufacturing Systems. Springer Science, New York (1993)

    Book  MATH  Google Scholar 

  99. Ziukov, S.: A literature review on models of inventory management under uncertainty. Bus. Syst. Econ. 5(1) (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Pérez Lechuga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lechuga, G.P., Sánchez, F.M. (2019). Modeling and Optimization of Flexible Manufacturing Systems: A Stochastic Approach. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing & Optimization. ICO 2018. Advances in Intelligent Systems and Computing, vol 866. Springer, Cham. https://doi.org/10.1007/978-3-030-00979-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00979-3_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00978-6

  • Online ISBN: 978-3-030-00979-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics