Advertisement

Algorithms for a Bit-Vector Encoding of Trees

  • Kaoutar GhaziEmail author
  • Laurent Beaudou
  • Olivier Raynaud
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 866)

Abstract

A bit-vector encoding is a well known method for representing hierarchies (i.e. partially ordered sets). This encoding corresponds to an embedding of a given hierarchy into a Boolean lattice whose dimension is the encoding’s size. Computing an optimal bit-vector encoding, which size is called the 2-dimension, is an \(\mathcal {N}\mathcal {P}\)-hard problem. Hence, many algorithms were designed to provide good bit-vector encoding. In this paper, we study tree hierarchies. We analyse previous algorithms for their bit-vector encoding then we point out their common strategy that led us to design a new algorithm improving all the previous ones.

Keywords

Partially ordered set Tree Bit-vector encoding 2-dimension Algorithms 

References

  1. 1.
    Caseau, Y.: Efficient handling of multiple inheritance hierarchies. In: Proceedings of OOPSLA (1993)Google Scholar
  2. 2.
    Caseau, Y., Habib, M., Nourine, L., Raynaud, O.: Encoding of Multiple Inheritance Hierarchies. Computational Intelligence (1999)Google Scholar
  3. 3.
    Colomb, P., Raynaud, O., Thierry, E.: Generalized polychotomic encoding: a very short bit-vector encoding of tree hierarchies. In: MCO (2008)Google Scholar
  4. 4.
    Fall, A.: The Foundations of Taxonomic Encodings. Computational Intelligence (1998)Google Scholar
  5. 5.
    Filman, R.E.: Polychotomic encoding: a better quasi-optimal bit-vector encoding of tree hierarchies. In: Proceedings of ECOOP (2002)CrossRefGoogle Scholar
  6. 6.
    Habib, M., Nourine, L., Raynaud, O., Thierry, E.: Computationel aspects of the 2-dimension of partially ordered sets. Theor. Comput. Sci. (2004)Google Scholar
  7. 7.
    Habib, M., Nourine, L.: Bit-vector encoding for partially ordered sets. In: Proceedings of the International Workshop on Orders, Algorithms, and Applications (1994)Google Scholar
  8. 8.
    Krall, A., Vitek, J., Horspool, R.N.: Near optimal hierarchical encoding of types. In: Proceedings of Ecoop (1997)Google Scholar
  9. 9.
    Raynaud, O., Thierry, E.: A quasi optimal bit-vector encoding of tree hierarchies. In: Proceedings of ECOOP 2001 Application to Efficient Type Inclusion Tests (2001)Google Scholar
  10. 10.
    Sperner, E.: Ein satz uber untermengen einer endlichen menge. Math. Z (1928)Google Scholar
  11. 11.
    Trotter, W.T.: Embedding finite posets in cubes. Discret. Math. (1975)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kaoutar Ghazi
    • 1
    Email author
  • Laurent Beaudou
    • 2
  • Olivier Raynaud
    • 2
  1. 1.GREYC, Caen Normandie UniversityCaenFrance
  2. 2.LIMOS, Clermont Auvergne UniversityClermont-FerrandFrance

Personalised recommendations