Insight into Microstructure of Lead Silicate Melts from Molecular Dynamics Simulation

  • Thanh-Nam TranEmail author
  • Nguyen Van Yen
  • Mai Van Dung
  • Tran Thanh Dung
  • Huynh Van Van
  • Le The Vinh
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 866)


In this study, the analysis on structure has been performed for lead silicate (PbSiO3) melt. The structural heterogeneity of the melt was analyzed via the void-simplex, cation-simplex and oxygen-simplex. The densification of the melt is obtained by decreasing the radius and changing the number of void-simplex. We show that a number of large interstitial site for oxygen and cation present in the liquid.


Molecular dynamics Structure heterogeneity Lead silicate melts 



This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.05-2017.345.


  1. 1.
    Ross, M., Stana, M., Leitner, M., Sepiol, B.: N. J. Phys. 16, 093042 (2014)CrossRefGoogle Scholar
  2. 2.
    Sundara Rao, M., Sanyal, B., Bhargavi, K., Vijay, R., Kityk, I.V.: J. Mol. Str. 1073, 174–180 (2014)CrossRefGoogle Scholar
  3. 3.
    Kopyto, M., Przybylo, W., Onderka, B., Fitzner, K.: Arch. Metall. Mater. 54, 811–822 (2009)Google Scholar
  4. 4.
    Kharita, M.H., Jabra, R., Yousef, S., Samaan, T.: Radiat. Phys. Chem. 81, 1568–1571 (2012)CrossRefGoogle Scholar
  5. 5.
    Dalby Kim, N., et al.: Geochim. Cosmochim. Acta 71, 4297–4313 (2007)CrossRefGoogle Scholar
  6. 6.
    Fayon, F., Bessada, C., Massiot, D., Farnan, I., Coutures, J.P.: J. Non-Cryst. Solids 232–234, 403 (1998)CrossRefGoogle Scholar
  7. 7.
    Shrikhande, V.K., Sudarsan, V., Kothiyal, G.P., Kulshreshtha, S.K.: J. Non-Cryst. Solids 283, 18 (2001)CrossRefGoogle Scholar
  8. 8.
    Sudarsan, V., Shrikhande, V.K., Kothiyal, G.P., Kulshreshtha, S.K.: J. Phys. Condens. Matter 14, 6553 (2002)CrossRefGoogle Scholar
  9. 9.
    Fayon, F., Landron, C., Sakurai, K., Bessada, C., Massiot, D.: J. Non-Cryst. Solids 243, 39 (1999)CrossRefGoogle Scholar
  10. 10.
    Feller, S., et al.: J. Non-Cryst. Solids 356, 304–313 (2010)CrossRefGoogle Scholar
  11. 11.
    De Sousa, Meneses D., Malki, M., Echegut, P.: J. Non-Cryst. Solids 352, 769–776 (2006)CrossRefGoogle Scholar
  12. 12.
    Bhargavi, K., et al.: Opt. Mater. 36, 1189–1196 (2014)CrossRefGoogle Scholar
  13. 13.
    Takaishi, T., Takahashi, M., Jin, J., Uchino, T., Yoko, T.: J. Am. Ceram. Soc. 88, 1591 (2005)CrossRefGoogle Scholar
  14. 14.
    Imaoka, M., Hasegawa, H., Yasui, I.: J. Non-Cryst. Solids 85, 393 (1986)CrossRefGoogle Scholar
  15. 15.
    Wang, P.W., Zhang, L.: J. Non-Cryst. Solids 194, 129 (1996)CrossRefGoogle Scholar
  16. 16.
    Manceau, A., et al.: Environ. Sci. Technol. 30, 1540 (1996)CrossRefGoogle Scholar
  17. 17.
    Choi, Y.G., Kim, K.H., Chernov, V.A., Heo, J.: J. Non-Cryst. Solids 246, 128 (1999)CrossRefGoogle Scholar
  18. 18.
    Witkowska, A., Rybicki, J., Trzebiatowski, K., Di Cicco, A., Minicucci, M.: J. Non-Cryst. Solids 276, 19 (2000)CrossRefGoogle Scholar
  19. 19.
    Hoppe, U., Kranold, R., Ghosh, A., Landron, C., Neuefeind, J., Jovari, P.: J. Non-Cryst. Solids 328, 146 (2003)CrossRefGoogle Scholar
  20. 20.
    Mastelaro, V.R., Zanotto, E.D., Lequeux, N., Cortes, R.: J. Non-Cryst. Solids 262, 191 (2000)CrossRefGoogle Scholar
  21. 21.
    Rybicki, J., et al.: J. Phys. Condens. Matter 13, 9781 (2001)CrossRefGoogle Scholar
  22. 22.
    Rybicki, J., Ala, W., Rybicka, A., Feliziani, S.: Comput. Phys. Commun. 97, 191 (1996)CrossRefGoogle Scholar
  23. 23.
    Rybicka, A., Rybicki, J., Witkowska, A., Feliziani, S., Mancini, G.: Comput. Methods Sci. Technol. 5, 67 (1999)Google Scholar
  24. 24.
    Witkowska, A., et al.: J. Non-Cryst. Solids 351, 380–393 (2005)CrossRefGoogle Scholar
  25. 25.
    Hemesath, E., Corrales, L.R.: J. Non-Cryst. Solids 351, 1522–31 (2005)Google Scholar
  26. 26.
    Chomenko, K., et al.: Comput. Method Sci. Technol. 10, 21–38 (2004)CrossRefGoogle Scholar
  27. 27.
    Narayanan, B., Reimanis, I.E., Ciobanu, C.V.: Atomic-scale mechanism for pressure-induced amorphization of b-eucryptite. J. Appl. Phys. 114, 083520 (2013)CrossRefGoogle Scholar
  28. 28.
    Okuno, M., Zotov, N., Schmucker, M., Schneider, H.: Structure of SiO2–Al2O3 glasses: combined X-ray diffraction, IR and Raman studies. J. Non-Cryst. Solids 351, 1032–1038 (2005)CrossRefGoogle Scholar
  29. 29.
    Poe, B.T., Mcmillan, P.F., Angell, C.A., Sato, R.K.: Al and Si coordination in SiO2–Al2O3 glasses and liquids: a study by NMR and IR spectroscopy and MD simulations. Chem. Geol. 96, 333–349 (1992)CrossRefGoogle Scholar
  30. 30.
    Zhang, Z., Zheng, K., Yang, F., Sridhar, S.: Molecular dynamics study of the structural properties of calcium aluminosilicate slags with varying Al2O3/SiO2 ratios. ISIJ Int. 52, 342–349 (2012)CrossRefGoogle Scholar
  31. 31.
    Takei, T., Kameshima, Y., Yasumori, A., Okada, K.: Calculation of metastable immiscibility region in the SiO2– Al2O3 system using molecular dynamics simulation. J. Mater. Res. 15, 186–193 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thanh-Nam Tran
    • 1
    Email author
  • Nguyen Van Yen
    • 4
  • Mai Van Dung
    • 2
    • 3
  • Tran Thanh Dung
    • 3
  • Huynh Van Van
    • 1
  • Le The Vinh
    • 1
  1. 1.Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Institute of Applied Materials ScienceVietnam Academy of Science and TechnologyHo Chi Minh CityVietnam
  3. 3.Thu Dau Mot UniversityThu Dau Mot CityVietnam
  4. 4.Hanoi University of Science and TechnologyHanoiViet Nam

Personalised recommendations