Advertisement

Optimization of Microclimate Parameters Inside Livestock Buildings

  • Gennady N. SamarinEmail author
  • Alexey N. Vasilyev
  • Alexander A. Zhukov
  • Sergey V. Soloviev
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 866)

Abstract

Concentration of a large number of animals in the same building, as foreseen by standard projects of large livestock complexes. These places high demands on micro-climate parameters, even a short-term change. It can lead to large economic and economic losses.

Investigating energy-saving methods of forming microclimate parameters, we summarized the disparate data of scientific research of various scientists in the field of veterinary hygiene and veterinary medicine. According to these information, we see to obtain the minimum cost of livestock products, we must control and manage the parameters of the microclimate and maintain them at the optimum level. One of the main directions in energy saving is the development of models of microclimate systems. It saves time and money when we have chose effective solutions of microclimate systems at the stage of their justification and development. Summarizing energy-saving measures in one project is not a guarantee of the most effective solution. Each of the solutions can be economically profitable in itself, but their combination in one project can give the opposite result. We have been selecting the optimal set of microclimate systems from a number of possible, it is necessary to use the scientific method of system analysis, which you allow to estimate the consequences of each solution in advance. The theoretical principles of the formation of heat and mass exchange processes are described in the article: in machines with animals that determine the analytical dependences of the influence of various microclimate parameters on the productivity of animals, the feed consumption; in the microclimate system of livestock buildings. Account the results of the theoretical and experimental studies have carried out, a mathematical model of the microclimate system of the cattle-breeding premises was developed, which it is determined by a system of three equations. In the basis of this mathematical model, an algorithm and a computer program for calculation have been developing that it allows to optimize the main design, technological and energy parameters of the system.

Keywords

Animal Animal husbandry Microclimate Optimization Energy Productivity Feed consumption 

References

  1. 1.
    Gosudarstvennaya programma razvitiya sel’skogo hozyajstva i regulirovaniya rynkov sel’skohozyajstvennoj produkcii, syr’ya i prodovol’stviya na 2013–2020 gody: utverzhdena postanovleniem Pravitel’stva Rossijskoj Federacii ot 14 iyulya 2012 goda N 717 [The state program of development of agriculture and regulation of the markets of agricultural products, raw materials and food for 2013–2020: is approved by the order of the Government of the Russian Federation of July 14, 2012 N 717]. (in Russian)Google Scholar
  2. 2.
    Strategiya ustojchivogo razvitiya sel’skih territorij Rossijskoj Federacii na period do 2030 goda: utverzhdena rasporyazheniem Pravitel’stva Rossijskoj Federacii ot 2 fevralya 2015 goda N 151-r [Strategy of sustainable development of rural areas of the Russian Federation for the period till 2030: approved by the order of the Government of the Russian Federation of February 2, 2015 N 151-p]. (in Russian)Google Scholar
  3. 3.
    Baroti, I.: EHnergosberegayushchie tekhnologii i agregaty na zhivotnovodcheskih fermah [energy-Saving technologies and units on livestock farms]/ I. Baroti, p. Rafan. M.: Agropromizdat, 227 p. (1988). (in Russian)Google Scholar
  4. 4.
    Beloglazova, T.N.: Mnogovariantnoe proektirovanie kompleksa inzhenernyh sistem obespecheniya mikroklimata: Na primere cekhov holodnoj obrabotki metallov [Multivariate design of complex engineering systems for the microclimate: the case of the shops of the cold treatment of metals]: Diss. … kand. Techn. science/T.N. Beloglazova. Perm, 230 p. (2000). (in Russian)Google Scholar
  5. 5.
    Borodin, I.F.: EHnergosberegayushchaya tekhnologiya formirovaniya optimal’nogo mikroklimata v zhivotnovodcheskih pomeshcheniyah [energy-Saving technology of optimal microclimate in livestock buildings]/Borodin, I.F., Rudobashta, S.P., Samarin, V.A., Samarin, G.N.: Technological and technical support for the production of livestock products: scientific papers of VIM. Part 2, vol. 142. M: VIM, p. 113 (2002). (in Russian)Google Scholar
  6. 6.
    Draganov, B.H.: Teplotekhnika i primenenie teploty v sel’skom hozyajstve [heat Engineering and application of heat in agriculture]/B.H. Draganov, A.V. Kuznetsov, S. p. Rudobashta. M.: Agropromizdat, 463 p. (1990). (in Russian)Google Scholar
  7. 7.
    Swan, A.A.:. Metodologiya proektirovaniya optimal’nyh sistem formirovaniya sredy obitaniya v pomeshcheniyah intensivnogo zhivotnovodstva i pticevodstva [a methodology for the design of optimal systems the formation of habitat in areas of intensive livestock and poultry production]: author. of Diss…Dr. of tech. Sciences/A.A. Swan. Minsk: TSNIIMESH of the USSR, 36 p. (1991). (in Russian)Google Scholar
  8. 8.
    Metodicheskie rekomendacii po opredeleniyu ehkonomicheskoj ehffektivnosti i ispol’zovaniya v sel’skom hozyajstve kapital’nyh vlozhenij i novoj tekhniki. [Methodical recommendations on determination of economic efficiency and use in agriculture of capital investments and new equipment]. HP: NIFTINESS, 58 p. (1986). (in Russian)Google Scholar
  9. 9.
    Mishchenko, S.V.: Matematicheskie modeli mikroklimata zhivotnovodcheskih pomeshchenij [Mathematical models of microclimate of livestock buildings]/Mishchenko, S.V., Ivanova, V.M.: Mechanization and electrification of agriculture, no. 12, p. 18–21 (1987). (in Russian)Google Scholar
  10. 10.
    Onegov, A.P.: Gigiena sel’skohozyajstvennyh zhivotnyh [Hygiene of farm animals]/A.P. Onegov, I.F. Khrabustovskyi, V.I. Chernykh. M.: Kolos, 400 p. (1984). (in Russian)Google Scholar
  11. 11.
    Popyrin, L.S.: Matematicheskoe modelirovanie i optimizaciya teploehnergeticheskih ustanovok [Mathematical modeling and optimization of thermal power plants]/L.S. Popyrin. M.: Energy, 416 p. (1978). (in Russian)Google Scholar
  12. 12.
    Samarin, G.N.: Upravlenie sredoj obitaniya sel’skohozyajstvennyh zhivotnyh i pticy: monografiya [Habitat management of farm animals and birds: monograph]/G.N. Samarin. Velikie Luki: FGOU VPO velikolukskaya state agricultural Academy, 286 p. (2008). (in Russian)Google Scholar
  13. 13.
    WATT Executive Guide to world Poultry Trends. The statistical reference for poultry executive, 45 p. (2009/10)Google Scholar
  14. 14.
    Kessel, H.W.: Warmetauscher im Stall/H.W. Kessel. - Agrartechnik International 58 (2006)Google Scholar
  15. 15.
    Stauffer, L.A.: Ventilation heat recovery with a heat pipe heat exehanger/L.A. Stauffer/ Agricultural Energy, ASAE pyblication, vol. 1 (2001)Google Scholar
  16. 16.
    Evaporative cooling system: Poult. Int. 41(3), 49 (2002)Google Scholar
  17. 17.
    Cutowski, W.: Ochrona Powietrza/W. Cutowski (2007)Google Scholar
  18. 18.
    Özmen, A., Weber, G.-W., Batmaz, İ.: The new robust CMARS (RCMARS) method. In: International Conference 24th Mini EURO Conference “Continuous Optimization and Information-Based Technologies in the Financial Sector” (MEC EurOPT 2010), 23–26 June 2010, Izmir, Turkey (2010)Google Scholar
  19. 19.
    Abraham, A., Steinberg, D., Philip, N.S.: Rainfall forecasting using soft computing models and multivariate adaptive regression splines. IEEE SMC Trans. 1, 1–6 (2001)Google Scholar
  20. 20.
    Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPR-SIAM Series on optimization. SIAM, Philadelphia (2001)CrossRefGoogle Scholar
  21. 21.
    Ben-Tal, A., Nemirovski, A.: Robust optimization—methodology and applications. Math. Program. 92(3), 453–480 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Fabozzi, F.J., Kolm, P.N., Pachamanova, D.A., Focardi, S.M.: Robust Portfolio Optimization and Management. Wiley, Hoboken (2007)Google Scholar
  23. 23.
    Taylan, P., Weber, G.-W., Yerlikaya, F.: Continuous optimization applied in MARS for modern applications in finance, science and technology. In: ISI Proceedings of 20th Mini-EURO Conference Continuous Optimization and Knowledge-Based Technologies, Neringa, Lithuania, pp. 317–322 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Federal State Budgetary Educational Institution of Higher Education, State Agricultural Academy of Velikie LukiVelikie Luki, Pskov regionRussia
  2. 2.Federal State Budgetary Scientific Institution “Federal Scientific Agroengeneering Center VIM” (FSAC VIM)MoscowRussia

Personalised recommendations