Advertisement

Optimization of Hybrid Wind and Solar Renewable Energy System by Iteration Method

  • Diriba Kajela Geleta
  • Mukhdeep Singh ManshahiaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 866)

Abstract

Because of depletion of fossil fuel, increasing energy demand, and increasing number of population, world has entered in to the new phase of energy extracting from alternating sources. These renewable energy sources are abundant, free from greenhouse gas and will become an alternative of fossil fuel. In this paper iteration method was involved to optimize the designed hybrid Wind and solar renewable energy system. As a result all the components are properly sized in order to meet the desired annual load with the minimum possible total annual cost.

Keywords

Hybrid renewable energy Optimization Iteration method 

References

  1. 1.
    Diriba, K.G., Manshahia, M.S.: Optimization of renewable energy systems: a review. Int. J. Sci. Res. Sci. Technol. 8(3), 769–795 (2017)Google Scholar
  2. 2.
    Kosmadakis, G., Sotirios, K., Emmanuel, K.: Renewable and conventional electricity generation systems: technologies and diversity of energy systems. In: Renewable Energy Governance, pp. 9–30. Springer, London (2013)Google Scholar
  3. 3.
    Zong Woo Geem: Size optimization for a hybrid photovoltaicwind energy system. Electr. Power Energy Syst. 42, 448451 (2012)Google Scholar
  4. 4.
    Luna Rubio, R., Trejo Perea, M., Vargas Vzquez, D., Ros-Moreno, G.J.: Optimal sizing of renewable hybrids energy systems: a review of methodologies. Solar Energy 86(4), 1077–1088 (2012)CrossRefGoogle Scholar
  5. 5.
    Kellog, W.D., Nehrir, M.H., Venkataramanan, G., Gerez, V.: Generation unit sizing and cost analysis for stand -alone wind, phovoltaic, and hybrid Wind/PV systems. IEEE Trans. Energy Convers. 13(1), 70–75 (1998)CrossRefGoogle Scholar
  6. 6.
    Askarzadeh, Alireza: Developing a discrete harmony search algorithm for size optimization of wind photovoltaic hybrid energy system. Solar Energy 98, 190–195 (2013)CrossRefGoogle Scholar
  7. 7.
    Kaabeche1 A., Belhamel1 M. and Ibtiouen R.: Optimal sizing method for stand-alone hybrid PV/wind power generation system. Revue des Energies Renouvelables SMEE, pp. 205–213 (2010)Google Scholar
  8. 8.
    Diriba K,G, Manshahia, M.S: Nature inspired computational intelligence: a survey. Int. J. Eng. Sci. Math. 6(7), 769–795 (2017)Google Scholar
  9. 9.
    Nafeh Abd El-Shafy, A.: Optimal economical sizing of a PV-wind hybrid energy system using genetic algorithm. Int. J. Green Energy 8(1), 25–43 (2011)Google Scholar
  10. 10.
    Koutroulis, E., Dionissia, K., Potirakis, A., Kostas, K.: Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Solar Energy 80(9), 1072–1088 (2006)CrossRefGoogle Scholar
  11. 11.
    Ashok, S.: Optimised model for community-based hybrid energy system. Renew. Energy 32(7), 1155–1164 (2007)CrossRefGoogle Scholar
  12. 12.
    Wang, L., Singh, C.: Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algorithm. IEEE Trans. Energy Conversion 24(1), 163–172 (2009)CrossRefGoogle Scholar
  13. 13.
    Yang, H., Zhou, W., Lou, C.: Optimal sizing method for stand-alone hybrid solarwind system with LPSP technology by using genetic algorithm. Solar Energy 82(4), 354–367 (2008)CrossRefGoogle Scholar
  14. 14.
    Yang, H., Zhou, W., Lou, C.: Optimal design and techno-economic analysis of a hybrid solarwind power generation system. Appl. Energy 86(2), 63–169 (2009)CrossRefGoogle Scholar
  15. 15.
    Ramoji, Satish K., Bibhuti, Bhusan R., Vijay, Kumar D.: Optimization of hybrid PV/wind energy system using genetic algorithm (GA). J. Eng. Res. Appl. 4, 29–37 (2014)Google Scholar
  16. 16.
    Shaahid, S.M., Elhadidy, M.A.: Economic analysis of hybrid photovoltaic and dieselbattery power systems for residential loads in hot regions, a step to clean future. Renew. Sustain. Energy Rev. 12(2), 488–503 (2008)CrossRefGoogle Scholar
  17. 17.
    Sopian, K.A., Zaharim, Y.A., Zulkifli, M.N., Juhari, A.R., Nor, S.M.: Optimal operational strategy for hybrid renewable energy system using genetic algorithms. WSEAS Trans. Math. 7(4), 130–140 (2008)Google Scholar
  18. 18.
    Amer, M., Namaane, A., M’sirdi, N.K.: Optimization of hybrid renewable energy systems (HRES) using PSO for cost reduction. Energy Proc. 42, 318–327 (2013)CrossRefGoogle Scholar
  19. 19.
    Muselli, M.N., Notton, G., Louche, A.: Design of hybrid-photovoltaic power generator, with optimization of energy management. Solar Energy 65(3), 143–157 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Diriba Kajela Geleta
    • 1
  • Mukhdeep Singh Manshahia
    • 2
    Email author
  1. 1.Department of MathematicsMadda Walabu UniversityOromiaEthiopia
  2. 2.Department of MathematicsPunjabi UniversityPunjabIndia

Personalised recommendations