Modelling of Postglacial Landscape Development

  • Jari PohjolaEmail author
  • Jari Turunen
  • Tarmo Lipping
  • Anna Sivula
  • Marko Marila
Part of the SpringerBriefs in Geography book series (BRIEFSGEOGRAPHY)


The postglacial land uplift process has been modelled using two different approaches: by modelling the geodynamics of the earth’s crust (also referred to as Glacial Isostatic Adjustment (GIA) modelling) or by fitting mathematical models to existing archaeological and geological data (referred to as semi-empirical modelling). Although the semi-empirical models are not based on the physical properties of the earth’s crust, they are easy to implement and can adapt better to local variations when compared to the GIA models. Semi-empirical models are fitted to the ice retreat data, eustatic sea level dynamics and lake isolation data on past shoreline displacement. As most of these data sources involve uncertainties, the land uplift process can be modelled probabilistically using the Monte Carlo method.


Land uplift modelling Shoreline displacement Ice retreat Eustatic model Optimization 


  1. Bard E, Hamelin B, Arnold M, Montaggioni L, Cabioch G, Faure G, Rougerie F (1996) Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382:241–244CrossRefGoogle Scholar
  2. Bågenholm G (1995) Corded ware ceramics in Finland and Sweden. Fennosc archaeol 12:19–23Google Scholar
  3. Björck S (1995) A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quat Int 27(94):19–40. Scholar
  4. Björck S (2008) The late quaternary development of the Baltic Sea Basin. In: von Storch H (ed) In assessment of climate change for the Baltic Sea Basin, chap A.2. Springer, Berlin, pp 398–407Google Scholar
  5. Chappell J, Polach H (1991) Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea. Nature 349:147–149CrossRefGoogle Scholar
  6. Eronen M, Glückert G, Hatakka L, van de Plassche O, van der Plicht J, Rantala P (2001) Rates of Holocene isostatic uplift and relative sea-level lowering of the Baltic in SW Finland based on studies on isolation contacts. Boreas 30(1):17–30. Scholar
  7. Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the younger dryas event and deep-ocean circulation. Nature 342:637–642CrossRefGoogle Scholar
  8. Grad M, Tiira T (2009) The Moho depth map of the European Plate. Geophys J Int 176(1):279–292., Scholar
  9. Gerya T (2009) Introduction to numerical geodynamic modelling. Cambridge University Press, New York.,, arXiv:1011.1669v3
  10. Hughes AL, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI (2016) The last Eurasian ice sheets-a chronological database and time-slice reconstruction, DATED-1. Boreas 45(1):1–45. Scholar
  11. Junno A, Uusitalo J, Oinonen M (2015) Radiocarbon dates of Helsinki University.
  12. Kinck JJ, Husebye ES, Larsson FR (1993) The Moho depth distribution in Fennoscandia and the regional tectonic evolution from Archean to Permian times. Precambr Res 64:23–51CrossRefGoogle Scholar
  13. Kollo K, Vermeer M (2010) Lithospheric thickness recovery from horizontal and vertical land uplift rates. J Geodyn 50(1):32–37. Scholar
  14. Lidberg M, Johansson JM, Scherneck HG, Milne GA (2010) Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. J Geodyn 50(1):8–18., Scholar
  15. Lokrantz H, Sohlenius G (2006) Ice marginal fluctuations during the Weichselian glaciation in Fennoscandia, a literature review. Technical report, Swedish Nuclear and Waste Management Co, Stockholm.
  16. Lunkka JP, Erikkilä A (2012) Behaviour of the lake district ice lobe of the Scandinavian ice sheet during the younger dryas chronozone (ca. 12800–11500 years ago). Technical report April, Posiva Oy, Eurajoki,
  17. Mäkilä M, Säävuori H, Kuznetsov O, Grundström A (2013) Age and dynamics of peatlands in Finland. Technical report, Geological Survey of Finland, Espoo, FinlandGoogle Scholar
  18. Müller J, Naeimi M, Gitlein O, Timmen L, Denker H (2012) A land uplift model in Fennoscandia combining GRACE and absolute gravimetry data. Phys. Chem. Earth 53–54:54–60. Scholar
  19. Ojala AE, Palmu JP, Åberg A, Åberg S, Virkki H (2013) Development of an ancient shoreline database to reconstruct the Litorina Sea maximum extension and the highest shoreline of the Baltic Sea basin in Finland. Bull Geol Soc Finland 85(PART 2): 127–144, Scholar
  20. Påsse T (2001) An empirical model of glacio-isostatic movements and shore-level displacement in Fennoscandia. Technical report, Swedish Nuclear Fuel and Waste Management Co.
  21. Peltier WR, Farrell WE, Clark JA (1978) Glacial isostasy element model. Tectonophysics 50:81–110CrossRefGoogle Scholar
  22. Punning YM (1987) Holocene eustatic oscillations of the Baltic Sea level. J Coastal Res 3(4):505–513Google Scholar
  23. Pohjola J, Turunen J, Lipping T, Ikonen ATK (2014) Landscape development modeling based on statistical framework. Comput Geosci 62. Scholar
  24. Poutanen M, Dransch D, Ivins ER, Klemann V, Kozlovskaya E, Kukkonen I, Lunkka JP, Milne G, Pascal C, Steffen H, Vermeersen B, Wolf D (2010) DynaQlim upper mantle dynamics and quaternary climate in cratonic areas. In: Cloetingh S, Negendank J (eds) New frontiers in integrated solid earth sciences. Springer Netherlands, Dordrecht, pp 349–372., http://link.springer.comGoogle Scholar
  25. Sabadini R, Vermeersen B (2004) Global dynamics of the earth. Kluwer Academic Publishers, Dordrecht., Scholar
  26. Scherneck HG, Johansson JM, Vermeer M, Davis JL, Milne GA, Mitrovica JX (2001) BIFROST project: 3-D crustal deformation rates derived from GPS confirm postglacial rebound in Fennoscandia. Earth Planets Space 53:703–708. Scholar
  27. Stroeven AP, Hättestrand C, Kleman J, Heyman J, Fabel D, Fredin O, Goodfellow BW, Harbor JM, Jansen JD, Olsen L, Caffee MW, Fink D, Lundqvist J, Rosqvist GC, Strömberg B, Jansson KN (2016) Deglaciation of Fennoscandia. Quat Sci Rev 147:91–121. Scholar
  28. Tallavaara M, Pesonen P, Oinonen M (2010) Prehistoric population history in eastern Fennoscandia. J Archaeol Sci 37(2):251–260. Scholar
  29. Timmen L, Gitlein O, Denker H, Bilker M, Wilmes H, Falk R, Reinhold A, Hoppe W, Pettersen BR, Engen B, Engfeldt A, Strykowski G, Forsberg R, Observatory OS, Survey N (2004) Observing Fennoscandian geoid change for GRACE validation. In: Joint CHAMP/GRACE science meeting, Potsdam, 6 July–8 July 2004, pp 1–10Google Scholar
  30. Vestøl O (2006) Determination of postglacial land uplift in Fennoscandia from leveling, tide-gauges and continuous GPS stations. J Geodesy 80(5):248–258. Scholar
  31. Vestøl O, Ågren J, Steffen H, Kierulf H, Lidberg M, Oja T, Rüdja A, Kall T, Saaranen V, Engsager K, Jepsen C, Liepins I, Parseliunas E, Tarasov L (2016) NKG2016LU, an improved postglacial land uplift model over the Nordic-Baltic region. In: NKG working group of geoid and height systemsGoogle Scholar
  32. Vuorela A, Penttinen T, Lahdenperä AM (2009) Review of Bothnian Sea shore-level displacement data and use of a GIS tool to estimate isostatic uplift review of Bothnian Sea shore-level displacement data and use of a GIS tool to estimate isostatic uplift. Technical report, Posiva Oy, Eurajoki.
  33. Whitehouse P (2009) Glacial isostatic adjustment and sea-level change: state of the art report. Technical report TR-09-11, Swedish Nuclear Fuel and Waste Management Co, Stockholm.

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tampere University of TechnologyPoriFinland
  2. 2.University of TurkuPoriFinland
  3. 3.Department of CulturesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations