Skip to main content

Computation of Total Kidney Volume from CT Images in Autosomal Dominant Polycystic Kidney Disease Using Multi-task 3D Convolutional Neural Networks

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11046))

Included in the following conference series:

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) characterized by progressive growth of renal cysts is the most prevalent and potentially lethal monogenic renal disease, affecting one in every 500–1000 people. Total Kidney Volume (TKV) and its growth computed from Computed Tomography images has been accepted as an essential prognostic marker for renal function loss. Due to large variation in shape and size of kidney in ADPKD, existing methods to compute TKV (i.e. to segment ADKP) including those based on 2D convolutional neural networks are not accurate enough to be directly useful in clinical practice. In this work, we propose multi-task 3D Convolutional Neural Networks to segment ADPK and achieve a mean DICE score of 0.95 and mean absolute percentage TKV error of 3.86%. Additionally, to solve the challenge of class imbalance, we propose to simply bootstrap cross entropy loss and compare results with recently prevalent dice loss in medical image segmentation community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muto, S., Kawano, H., Isotani, S., Ide, H., Horie, S.: Novel semi-automated kidney volume measurements in autosomal dominant polycystic kidney disease. Clin. Exp. Nephrol. 22(3), 583–590 (2017)

    Article  Google Scholar 

  2. Gansevoort, R.T., Arici, M., Benzing, T.: Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA working groups on inherited kidney disorders and european renal best practice. Nephrol. Dial. Transpl. 31(3), 337–348 (2016)

    Article  Google Scholar 

  3. NIH homepage: https://ghr.nlm.nih.gov/condition/polycystic-kidney-disease#statistics. Accessed 03 Feb 2017

  4. Sharma, K., Rupprecht, C., Caroli, A.: Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease. Sci. Rep. 7(1), 2049 (2017)

    Article  Google Scholar 

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, Gozde, Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: Fourth International Conference on 3D Vision (3DV), 2016, pp. 565–571. IEEE (2016)

    Google Scholar 

  7. Moeskops, P., et al.: Deep Learning for Multi-task Medical Image Segmentation in Multiple Modalities. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 478–486. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_55

    Chapter  Google Scholar 

  8. Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4151–4160 (2017)

    Google Scholar 

Download references

Acknowledgements

We acknowledge using Reedbush-L (SGI Rackable C2112-4GP3/C1102-GP8) HPC system in the Information Technology Center, The University of Tokyo for GPU computational resources used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Keshwani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keshwani, D., Kitamura, Y., Li, Y. (2018). Computation of Total Kidney Volume from CT Images in Autosomal Dominant Polycystic Kidney Disease Using Multi-task 3D Convolutional Neural Networks. In: Shi, Y., Suk, HI., Liu, M. (eds) Machine Learning in Medical Imaging. MLMI 2018. Lecture Notes in Computer Science(), vol 11046. Springer, Cham. https://doi.org/10.1007/978-3-030-00919-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00919-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00918-2

  • Online ISBN: 978-3-030-00919-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics