Skip to main content

Nuclei Detection Using Mixture Density Networks

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11046))

Included in the following conference series:

Abstract

Nuclei detection is an important task in the histology domain as it is a main step toward further analysis such as cell counting, cell segmentation, study of cell connections, etc. This is a challenging task due to complex texture of histology image, variation in shape, and touching cells. To tackle these hurdles, many approaches have been proposed in the literature where deep learning methods stand on top in terms of performance. Hence, in this paper, we propose a novel framework for nuclei detection based on Mixture Density Networks (MDNs). These networks are suitable to map a single input to several possible outputs and we utilize this property to detect multiple seeds in a single image patch. A new modified form of a cost function is proposed for training and handling patches with missing nuclei. The probability maps of the nuclei in the individual patches are next combined to generate the final image-wide result. The experimental results show the state-of-the-art performance on complex colorectal adenocarcinoma dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grau, V., Mewes, A., Alcaniz, M., Kikinis, R., Warfield, S.K.: Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med. Imaging 23(4), 447–458 (2004)

    Google Scholar 

  2. Quelhas, P., Marcuzzo, M., Mendonça, A.M., Campilho, A.: Cell nuclei and cytoplasm joint segmentation using the sliding band filter. IEEE Trans. Med. Imaging 29(8), 1463–1473 (2010)

    Google Scholar 

  3. Schmitt, O., Hasse, M.: Radial symmetries based decomposition of cell clusters in binary and gray level images. Pattern Recognit. 41(6), 1905–1923 (2008)

    MATH  Google Scholar 

  4. Parvin, B., Yang, Q., Han, J., Chang, H., Rydberg, B., Barcellos-Hoff, M.H.: Iterative voting for inference of structural saliency and characterization of subcellular events. IEEE Trans. Image Process. 16(3), 615–623 (2007)

    MathSciNet  Google Scholar 

  5. Qi, X., Xing, F., Foran, D.J., Yang, L.: Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set. IEEE Trans. Biomed. Eng. 59(3), 754–765 (2012)

    Google Scholar 

  6. Hafiane, A., Bunyak, F., Palaniappan, K.: Fuzzy clustering and active contours for histopathology image segmentation and nuclei detection. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 903–914. Springer, Berlin (2008)

    Google Scholar 

  7. Akakin, H.C., et al.: Automated detection of cells from immunohistochemically-stained tissues: application to Ki-67 nuclei staining. In: Medical Imaging 2012: Computer-Aided Diagnosis. Volume 8315, International Society for Optics and Photonics (2012) 831503

    Google Scholar 

  8. Yang, L., Tuzel, O., Meer, P., Foran, D.J.: Automatic image analysis of histopathology specimens using concave vertex graph. In: International Conference on Medical Image Computing and Computer-Assisted Intervention,pp. 833–841. Springer, Berlin (2008)

    Google Scholar 

  9. Jung, C., Kim, C.: Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization. IEEE Trans. Biomed. Eng. 57(10), 2600–2604 (2010)

    Google Scholar 

  10. Thomas, R.M., John, J.: A review on cell detection and segmentation in microscopic images. In: 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–5. IEEE (2017)

    Google Scholar 

  11. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 411–418. Springer, Berlin (2013)

    Google Scholar 

  12. Xie, Y., Xing, F., Shi, X., Kong, X., Su, H., Yang, L.: Efficient and robust cell detection: a structured regression approach. Med. Image Anal. 44, 245–254 (2018)

    Google Scholar 

  13. Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119–130 (2016)

    Google Scholar 

  14. Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)

    Google Scholar 

  15. Bishop, C.M.: Mixture density networks. Technical report. Citeseer (1994)

    Google Scholar 

  16. Xie, W., Noble, J.A., Zisserman, A.: Microscopy cell counting and detection with fully convolutional regression networks. Comput. Methods Biomech. Biomed. Eng.: Imaging Vis. 6(3), 283–292 (2018)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Alemi Koohababni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koohababni, N.A., Jahanifar, M., Gooya, A., Rajpoot, N. (2018). Nuclei Detection Using Mixture Density Networks. In: Shi, Y., Suk, HI., Liu, M. (eds) Machine Learning in Medical Imaging. MLMI 2018. Lecture Notes in Computer Science(), vol 11046. Springer, Cham. https://doi.org/10.1007/978-3-030-00919-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00919-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00918-2

  • Online ISBN: 978-3-030-00919-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics