Skip to main content

Can Dilated Convolutions Capture Ultrasound Video Dynamics?

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11046))

Included in the following conference series:

Abstract

Automated analysis of free-hand ultrasound video sweeps is an important topic in diagnostic and interventional imaging, however, it is a notoriously challenging task for detecting the standard planes, due to the low-quality data, variability in contrast, appearance and placement of the structures. Conventionally, sequential data is usually modelled with heavy Recurrent Neural Networks (RNNs). In this paper, we propose to apply a convolutional architecture (CNNs) for the standard plane detection in free-hand ultrasound videos. Our contributions are twofolds, firstly, we show a simple convolutional architecture can be applied to characterize the long range dependencies in the challenging ultrasound video sequences, and outperform the canonical LSTMs and the recently proposed two-stream spatial ConvNet by a large margin (89% versus 83% and 84% respectively). Secondly, to get an understanding of what evidences have been used by the model for decision making, we experimented with the soft-attention layers for feature pooling, and trained the entire model end-to-end with only standard classification losses. As a result, we find the input-dependent attention maps can not only boost the network’s performance, but also indicate useful patterns of the data that are deemed important for certain structure, therefore provide interpretation while deploying the models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maraci, M.A., Bridge, C.P., Napolitano, R., Papageorghiou, A., Noble, J.A.: A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat. Med. Image Anal. 37, 22–36 (2017)

    Article  Google Scholar 

  2. Bridge, C.P., Ioannou, C., Noble, J.A.: Automated annotation and quantitative description of ultrasound videos of the fetal heart. Med. Image Anal. 36, 147–161 (2017)

    Article  Google Scholar 

  3. Baumgartner, C.F., et al.: Real-time detection and localisation of fetal standard scan planes in 2d freehand ultrasound. CoRR abs/1612.05601 (2016)

    Google Scholar 

  4. Chen, H., et al.: Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 507–514. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_62

    Chapter  Google Scholar 

  5. Huang, W., Bridge, C.P., Noble, J.A., Zisserman, A.: Temporal heartnet: towards human-level automatic analysis of fetal cardiac screening video. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 341–349. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_39

    Chapter  Google Scholar 

  6. Gao, Y., Alison Noble, J.: Detection and characterization of the fetal heartbeat in free-hand ultrasound sweeps with weakly-supervised two-streams convolutional networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 305–313. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_35

    Chapter  Google Scholar 

  7. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4733. IEEE (2017)

    Google Scholar 

  8. Van Den Oord, A., et al.: A generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  9. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. In: ACL (2014)

    Google Scholar 

  10. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated convolutional networks. arXiv preprint arXiv:1612.08083 (2016)

  11. Girdhar, R., Ramanan, D.: Attentional pooling for action recognition. CoRR abs/1711.01467 (2017)

    Google Scholar 

  12. Yang, J., Ren, P., Chen, D., Wen, F., Li, H., Hua, G.: Neural aggregation network for video face recognition. CoRR abs/1603.05474 (2016)

    Google Scholar 

  13. Wang, X., Girshick, R.B., Gupta, A., He, K.: Non-local neural networks. CoRR abs/1711.07971 (2017)

    Google Scholar 

  14. Lin, M., Chen, Q., Yan, S.: Network in network. CoRR abs/1312.4400 (2013)

    Google Scholar 

Download references

Acknowledgments

The National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, grant BRC-1215-20008, EPSRC grant EP/M013774/1, MRC grant MR/P027938/1, ERC Advanced Grant 694581 (PULSE) and NVIDIA Corporations GPU grant are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Maraci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maraci, M.A., Xie, W., Noble, J.A. (2018). Can Dilated Convolutions Capture Ultrasound Video Dynamics?. In: Shi, Y., Suk, HI., Liu, M. (eds) Machine Learning in Medical Imaging. MLMI 2018. Lecture Notes in Computer Science(), vol 11046. Springer, Cham. https://doi.org/10.1007/978-3-030-00919-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00919-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00918-2

  • Online ISBN: 978-3-030-00919-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics