Skip to main content

Sensor Data Classification for the Indication of Lameness in Sheep

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2017)

Abstract

Lameness is a vital welfare issue in most sheep farming countries, including the UK. The pre-detection at the farm level could prevent the disease from becoming chronic. The development of wearable sensor technologies enables the idea of remotely monitoring the changes in animal movements which relate to lameness. In this study, 3D-acceleration, 3D-orientation, and 3D-linear acceleration sensor data were recorded at ten samples per second via the sensor attached to sheep neck collar. This research aimed at determining the best accuracy among various supervised machine learning techniques which can predict the early signs of lameness while the sheep are walking on a flat field. The most influencing predictors for lameness indication were also addressed here. The experimental results revealed that the Decision Tree classifier has the highest accuracy of 75.46%, and the orientation sensor data (angles) around the neck are the strongest predictors to differentiate among severely lame, mildly lame and sound classes of sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Nuffel, A., et al.: Lameness detection in dairy cows: part 1. How to distinguish between non-lame and lame cows based on differences in locomotion or behavior. Animals 5(3), 838–860 (2015)

    Article  Google Scholar 

  2. Groenevelt, M., Anzuino, K., Smith, S., Lee, M.R.F., Grogono-Thomas, R.: A case report of lameness in two dairy goat herds; a suspected combination of nutritional factors concurrent with treponeme infection. BMC Res. Notes 8(1), 791 (2015)

    Article  Google Scholar 

  3. Scott, P.D.: DipECBHM, CertCHP, DSHP, and FRCVS. In: Lameness Control in Sheep (2016). http://www.nadis.org.uk/bulletins/lameness-control-in-sheep.aspx. Accessed 13 Mar 2017

  4. Brian, K.: Reducing Lameness for Better Returns (2016)

    Google Scholar 

  5. Defra: Lameness in Sheep (2003). http://adlib.everysite.co.uk/adlib/defra/content.aspx?id=000IL3890W.18B4NRK0LZK8LC. Accessed 14 Mar 2017

  6. Alsaaod, M., et al.: Electronic detection of lameness in dairy cows through measuring pedometric activity and lying behavior. Appl. Anim. Behav. Sci. 142(3–4), 134–141 (2012)

    Article  Google Scholar 

  7. AHDB: Managing Cull Ewes (2016)

    Google Scholar 

  8. Flower, F.C., Weary, D.M.: Gait assessment in dairy cattle. Animal 3(1), 87–95 (2009)

    Article  Google Scholar 

  9. Poursaberi, A., Bahr, C., Pluk, A., Van Nuffel, A., Berckmans, D.: Real-time automatic lameness detection based on back posture extraction in dairy cattle: shape analysis of cow with image processing techniques. Comput. Electron. Agric. 74(1), 110–119 (2010)

    Article  Google Scholar 

  10. Viazzi, S., et al.: Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle. J. Dairy Sci. 96(1), 257–266 (2013)

    Article  Google Scholar 

  11. Viazzi, S., Bahr, C., Van Hertem, T., Schlageter-Tello, A., Romanini, C.E.B., Halachmi, I., Lokhorst, C., Berckmans, D.: Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows. Comput. Electron. Agric. 100, 139–147 (2014)

    Article  Google Scholar 

  12. Poursaberi, A., et al.: Online lameness detection in dairy cattle using Body Movement Pattern (BMP). In: International Conference on Intelligent Systems Design and Applications, no. 1, pp. 732–736 (2011)

    Google Scholar 

  13. Song, X., Leroy, T., Vranken, E., Maertens, W., Sonck, B., Berckmans, D.: Automatic detection of lameness in dairy cattle-vision-based trackway analysis in cow’s locomotion. Comput. Electron. Agric. 64(1), 39–44 (2008)

    Article  Google Scholar 

  14. Pluk, A., et al.: Evaluation of step overlap as an automatic measure in dairy cow locomotion. Am. Soc. Agric. Biol. Eng. 53(4), 1305–1312 (2010)

    Google Scholar 

  15. Van Hertem, T., et al.: Improving a computer vision lameness detection system by adding behaviour and performance measures. In: Proceedings of International Conference on Agricultural Engineering, pp. 1–8 (2014)

    Google Scholar 

  16. Mazrier, H., Tal, S., Aizinbud, E., Bargai, U.: A field investigation of the use of the pedometer for the early detection of lameness in cattle. Can. Vet. J. 47(9), 883–886 (2006)

    Google Scholar 

  17. Pastell, M., Tiusanen, J., Hakojärvi, M., Hänninen, L.: A wireless accelerometer system with wavelet analysis for assessing lameness in cattle. Biosyst. Eng. 104(4), 545–551 (2009)

    Article  Google Scholar 

  18. Chapinal, N., de Passillé, A.M., Pastell, M., Hänninen, L., Munksgaard, L., Rushen, J.: Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle. J. Dairy Sci. 94(6), 2895–2901 (2011)

    Article  Google Scholar 

  19. Kokin, E., Praks, J., Veermäe, I., Poikalainen, V., Vallas, M.: IceTag3DTM accelerometric device in cattle lameness detection. Agron. Res. 12(1), 223–230 (2014)

    Google Scholar 

  20. Thorup, V.M., Munksgaard, L., Robert, P.E., Erhard, H.W., Thomsen, P.T., Friggens, N.C.: Lameness detection via leg-mounted accelerometers on dairy cows on four commercial farms. Animal 9(10), 1704–1712 (2015)

    Article  Google Scholar 

  21. Mottram, T.T., Bell, N.J.: A novel method of monitoring mobility in dairy cows. In: 1st North American Conference Precis. Dairy Management, pp. 2–3 (2010)

    Google Scholar 

  22. Krause, J., Krause, S., Arlinghaus, R., Psorakis, I., Roberts, S., Rutz, C.: Reality mining of animal social systems. Trends Ecol. Evol. 28(9), 541–551 (2013)

    Article  Google Scholar 

  23. Jiawei, H., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Elsevier, New York (2012)

    MATH  Google Scholar 

  24. Nadimi, E.S., Søgaard, H.T., Bak, T.: ZigBee-based wireless sensor networks for classifying the behaviour of a herd of animals using classification trees. Biosyst. Eng. 100(2), 167–176 (2008)

    Article  Google Scholar 

  25. Robert, B., White, B.J., Renter, D.G., Larson, R.L.: Evaluation of three-dimensional accelerometers to monitor and classify behavior patterns in cattle. Comput. Electron. Agric. 67(1–2), 80–84 (2009)

    Article  Google Scholar 

  26. González, L.A., Bishop-Hurley, G.J., Handcock, R.N., Crossman, C.: Behavioral classification of data from collars containing motion sensors in grazing cattle. Comput. Electron. Agric. 110, 91–102 (2015)

    Article  Google Scholar 

  27. Dutta, R., et al.: Dynamic cattle behavioural classification using supervised ensemble classifiers. Comput. Electron. Agric. 111, 18–28 (2015)

    Article  Google Scholar 

  28. de Weerd, N., et al.: Deriving animal behaviour from high-frequency GPS: tracking cows in open and forested habitat. PLoS ONE 10(6), e0129030 (2015)

    Article  Google Scholar 

  29. Guo, Y., Poulton, G., Corke, P., Bishop-Hurley, G.J., Wark, T., Swain, D.L.: Using accelerometer, high sample rate GPS and magnetometer data to develop a cattle movement and behaviour model. Ecol. Model. 220(17), 2068–2075 (2009)

    Article  Google Scholar 

  30. Martiskainen, P., Järvinen, M., Skön, J.-P., Tiirikainen, J., Kolehmainen, M., Mononen, J.: Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 119(1–2), 32–38 (2009)

    Article  Google Scholar 

  31. Vázquez Diosdado, J.A., et al.: Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system. Anim. Biotelem. 3(1), 15 (2015)

    Article  Google Scholar 

  32. Umstätter, C., Waterhouse, A., Holland, J.P.: An automated sensor-based method of simple behavioural classification of sheep in extensive systems. Comput. Electron. Agric. 64(1), 19–26 (2008)

    Article  Google Scholar 

  33. Marais, J., Le Roux, S.P., Wolhuter, R., Niesler, T.: Automatic classification of sheep behaviour using 3-axis accelerometer data. In: 25th Annual Symposium of the Pattern Recognition Association of South Africa (PRASA) (2014)

    Google Scholar 

  34. Alvarenga, F.A.P., Borges, I., Palkovič, L., Rodina, J., Oddy, V.H., Dobos, R.C.: Using a three-axis accelerometer to identify and classify sheep behaviour at pasture. Appl. Anim. Behav. Sci. 181, 91–99 (2015)

    Article  Google Scholar 

  35. Giovanetti, V., et al.: Automatic classification system for grazing, ruminating and resting behaviour of dairy sheep using a tri-axial accelerometer. Livest. Sci. 196, 42–48 (2016)

    Article  Google Scholar 

  36. Bitar, H.: SensoDuino: Log and Transmit Android Sensors to Arduino & PC via Bluetooth (2013)

    Google Scholar 

  37. Kevin, M.: Simple guide to confusion matrix terminology. Data School (2014). http://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/. Accessed 28 Aug 2017

  38. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. Pearson Education India, Delhi (2006)

    Google Scholar 

Download references

Acknowledgement

With great appreciation to the Ministry of Higher Education and Scientific Research in Iraq for the financial support. Many thanks to the University of Northampton and Moulton College for the cooperative efforts to provide a satisfactory academic environment. Many thanks for the Lodge Farm Shepherd ‘Tim’ who was very helpful in scheduling the observation time at Lodge Farm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainab Al-Rubaye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Rubaye, Z., Al-Sherbaz, A., McCormick, W., Turner, S. (2018). Sensor Data Classification for the Indication of Lameness in Sheep. In: Romdhani, I., Shu, L., Takahiro, H., Zhou, Z., Gordon, T., Zeng, D. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-030-00916-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00916-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00915-1

  • Online ISBN: 978-3-030-00916-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics