Skip to main content

Generalized Systems

  • Chapter
  • First Online:
  • 1354 Accesses

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 25))

Abstract

This chapter addresses the generalization of classical models and systems in the perspective of FC. The following sections study the Cornu, Emden, Hermite, Legendre, and Bessel fractional systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    M.A. Cornu (1841–1902).

  2. 2.

    H. Müntz (1884–1956).

  3. 3.

    J.P. Gram (1850–1916).

  4. 4.

    J.H. Lane (1819–1880).

  5. 5.

    J.R. Emden (1862–1940).

  6. 6.

    C. Hermite (1822–1901).

  7. 7.

    F. Bessel (1784–1846).

  8. 8.

    A.J. Lotka (1880–1949).

  9. 9.

    E.N. Lorenz (1917–2008).

References

  1. Almira, J. M. (2007). Müntz type theorem I. Surveys in Approximation Theory, 3, 152–194.

    MathSciNet  MATH  Google Scholar 

  2. El-Ajou, A., Arqub, O. A., Al Zhour, Z., & Momani, S. (2013). Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives. Entropy, 15, 5305–5323.

    Article  MathSciNet  Google Scholar 

  3. Johnson, R. S. (2006). The notebook series. the series of second order ordinary differential equation and special function. Technical report, School of Mathematics & Statistics, University of Newcastle upon Tyne.

    Google Scholar 

  4. Milici, C., & Drăgănescu, G. (2017). Generalization of the equations of Hermite, Legendre and Bessel for the fractional case. Journal of Applied Nonlinear Dynamics, 6, 243–249.

    Article  MathSciNet  Google Scholar 

  5. Milici, C., & Drăgănescu, G. (2017). The Lane-Emden fractional homogenous differential equation. Journal of Applied Nonlinear Dynamics, 6, 237–242.

    Article  MathSciNet  Google Scholar 

  6. Nikiforov, A. F., & Ouvarov, V. (1976). Eléments de la théorie des fonctions spéciales. Moscow: Mir Publishers.

    Google Scholar 

  7. Rudin, W. (1966). Fractional calculus with applications for nuclear reactor dynamics. New York: McGraw-Hill.

    Google Scholar 

  8. von Golitschek, M. (1983). A short proof of Müntz theorem. Journal of Approximation Theory, 39, 394–395.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milici, C., Drăgănescu, G., Tenreiro Machado, J. (2019). Generalized Systems. In: Introduction to Fractional Differential Equations. Nonlinear Systems and Complexity, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-00895-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00895-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00894-9

  • Online ISBN: 978-3-030-00895-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics