Skip to main content

Chemical Composition and Characterization of Cotton Fibers

  • Chapter
  • First Online:
Book cover Cotton Fiber: Physics, Chemistry and Biology

Abstract

Cotton fiber development includes at least four overlapping but distinctive phases: initiation, primary wall formation (elongation), secondary cell wall thickening (cellulose synthesis), and maturation, reflecting a continuous change in secondary cell wall composition and cellulose rearrangement. There are voluminous studies on the chemical, compositional, and structural aspects of cotton fibers at different stages, together with their physical properties and end-use qualities, by comprehensive and diversified methods and systems in cotton industry. The accumulated knowledge helps cotton breeders and growers to improve cotton quality traits and yield and also textile processors to enhance fiber processing efficiency and productivity. However, because cotton fiber cellulose is not easily dissolved in most solvents, it brings challenges in its chemical, compositional, and structural characterization rapidly and accurately. In addition to an overview of traditional fiber chemical composition and structural measurement, this chapter discusses the latest developments of utilizing Fourier transform infrared (FT-IR) spectroscopy, a rapid and nondestructive technique, to investigate fiber chemical composition and structure aspects for cotton fiber physiology and breeding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr Polym 100:9–16

    Article  CAS  PubMed  Google Scholar 

  • Abidi N, Cabrales L, Hequet E (2010) Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose 17:309–320

    Article  CAS  Google Scholar 

  • Abidi N, Hequet E (2007) Fourier transform infrared analysis of cotton contamination. Text Res J 77:77–84

    Article  CAS  Google Scholar 

  • Abidi N, Hequet E, Cabrales L (2010) Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers. Cellulose 17:153–160

    Article  CAS  Google Scholar 

  • Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107:476–486

    Article  CAS  Google Scholar 

  • Abidi N, Manike M (2017) X-ray diffraction and FTIR investigations of cellulose deposition during cotton fiber development. Text Res J 88:719–730

    Article  CAS  Google Scholar 

  • Barton FE II, Bargeron JD III, Gamble GR, McAlister DL, Hequet E (2005) Analysis of sticky cotton by near-infrared spectroscopy. Appl Spectrosc 59:1388–1392

    Article  CAS  PubMed  Google Scholar 

  • Benedict C, Kohel R, Jividen G (1994) Crystalline cellulose and cotton fiber strength. Crop Sci 34:147–151

    Article  CAS  Google Scholar 

  • Boylston EK, Hebert JJ (1995) The primary wall of cotton fibers. Text Res J 65:429–431

    Article  CAS  Google Scholar 

  • Bradow JM, Davidonis GH (2000) Quantitation of fiber quality and the cotton production–processing interface: a physiologist’s perspective. J Cotton Sci 4:34–64

    Google Scholar 

  • Brushwood DE (2005) Predicting yarn processing performance from the noncellulosic content of raw cottons. Text Res J 75:1–5

    Article  CAS  Google Scholar 

  • Cho Y, Han Y, Lambert W, Bragg C (1996) Characterizing convolutions in cotton fiber and their effects on fiber strength. Trans ASAE 40:479–483

    Article  Google Scholar 

  • Church JS, Woodhead AL (2006) Spectroscopic assessment of Australian cotton waxes. Appl Spectrosc 60:1334–1340

    Article  CAS  PubMed  Google Scholar 

  • Church JS, Woodhead AL (2017) Cotton fiber wax and surface properties. In: Gordon S, Abidi N (eds) Cotton fibers: characteristics, uses and performance. Nova Science, New York, pp 21–41

    Google Scholar 

  • Conrad CM (1944) Determination of wax in cotton fiber a new alcohol extraction method. Ind Eng Chem Anal Ed 16:745–748

    Article  CAS  Google Scholar 

  • Cui XL, Price JB, Calamari TA, Hemstreet JM, Meredith WR (2002) Cotton wax and its relationship with fiber and yarn properties: part I: wax content and fiber properties. Text Res J 72:399–404

    Article  CAS  Google Scholar 

  • Fang DD, Percy RG (2015) Cotton, Agronomy monograph 57, 2nd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison

    Google Scholar 

  • Foulk JA, Mcalister DD III (2002) Single cotton fiber properties of low, ideal, and high micronaire values. Text Res J 72:885–891

    Article  CAS  Google Scholar 

  • Frydrych I, Thibodeaux D (2010) Fiber quality evaluation – current and future trends/intrinsic value of fiber quality in cotton. In: Wakelyn PJ, Chaudhry MR (eds) Cotton: technology for the 21st century. International Cotton Advisory Committee, Washington, pp 251–295

    Google Scholar 

  • Gamble GR (2003a) Evaluation of cotton stickiness via the thermochemical production of volatile compounds. J Cotton Sci 7:45–50

    CAS  Google Scholar 

  • Gamble GR (2003b) Variation in surface chemical constituents of cotton (Gossypium hirsutum) fiber as a function of maturity. J Agric Food Chem 51:7995–7998

    Article  CAS  PubMed  Google Scholar 

  • Gamble GR (2004) Implications of surface chemistry on cotton fiber processing. J Cotton Sci 8:198–204

    CAS  Google Scholar 

  • Gamble GR (2008) Method for the prediction of the rate of +b color change in upland cotton (Gossypium hirsutum L.) as a function of storage temperatures. J Cotton Sci 12:171–177

    CAS  Google Scholar 

  • Gamble GR (2009) Regional, varietal, and crop year variations of metal contents associated with the separate structural components of upland cotton (Gossypium hirsutum) fiber. J Cotton Sci 13:221–226

    CAS  Google Scholar 

  • Gordon S, Abidi N (2017) Cotton fibers: characteristics, uses and performance. Nova Science, New York

    Google Scholar 

  • Gordon S, Hsieh Y-L (2007) Cotton: science and technology. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • Hartzell-Lawson MM, Hsieh Y-L (2000) Characterizing the noncellulosics in developing cotton fibers. Text Res J 70:810–819

    Article  CAS  Google Scholar 

  • Hearle JWS (2007) Physical structure and properties of cotton. In: Gordon S, Hsieh Y-L (eds) Cotton: science and technology. Woodhead Publishing, Cambridge, pp 35–67

    Chapter  Google Scholar 

  • Hearle JWS, Sparrow JT (1971) The fractography of cotton fibers. Text Res J 41:736–749

    Article  Google Scholar 

  • Hequet EF, Abidi N (2006) Sticky cotton: measurements and fiber processing. Texas Tech University Press, Lubbock, pp 14–29

    Google Scholar 

  • Himmelsbach DS, Akin DE, Kim J, Hardin IR (2003) Chemical structural investigation of the cotton fiber base and associated seed coat: Fourier-transform infrared mapping and. Text Res J 73:281–288

    Article  CAS  Google Scholar 

  • Hindeleh AM (1980) Crystallinity, crystallite size, and physical properties of native Egyptian cotton. Text Res J 50:667–674

    Article  CAS  Google Scholar 

  • Hsieh Y-L (2007) Chemical structure and properties of cotton. In: Gordon S, Hsieh Y-L (eds) Cotton: science and technology. Woodhead Publishing, Cambridge, pp 3–34

    Chapter  Google Scholar 

  • Hsieh Y-L, Hu X-P, Nguyen A (1997) Strength and crystalline structure of developing Acala cotton. Text Res J 67:529–536

    Article  CAS  Google Scholar 

  • Hsieh Y-L, Hu X-P, Wang A (2000) Single fiber strength variations of developing cotton fibers. Text Res J 70:682–690

    Article  CAS  Google Scholar 

  • Hu X-P, Hsieh Y-L (2001) Effects of dehydration on the crystalline structure and strength of developing cotton fibers. Text Res J 71:231–239

    Article  CAS  Google Scholar 

  • Huwyler HR, Franz G, Meier H (1979) Changes in the composition of cotton fiber cell walls during development. Planta 146:635–642

    Article  CAS  PubMed  Google Scholar 

  • Islam MS, Fang DD, Thyssen GN, Delhom CD, Liu Y, Kim HJ (2016) Comparative fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength in cotton (Gossypium hirsutum L.) line MD52ne. BMC Plant Biol 16:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kataoka Y, Kondo T (1998) FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31:760–764

    Article  CAS  Google Scholar 

  • Kelly C, Hequet E, Dever J (2012) Interpretation of AFIS and HVI fiber property measurements in breeding for cotton fiber quality improvement. J Cotton Sci 16:1–16

    Google Scholar 

  • Kim HJ (2015) Fiber biology. In: Fang DD, Percy RG (eds) Cotton, Agronomy monograph 57, 2nd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 97–127

    Google Scholar 

  • Kim HJ, Lee CM, Dazen K, Delhom CD, Liu Y, Rodgers JM, French AD, Kim SH (2017) Comparative physical and chemical analyses of cotton fibers from two near isogenic upland lines differing in fiber wall thickness. Cellulose 24:2385–2401

    Article  CAS  Google Scholar 

  • Kim HJ, Rodgers J, Delhom C, Cui X (2014) Comparisons of methods measuring fiber maturity and fineness of upland cotton fibers containing different degree of fiber cell wall development. Text Res J 84:1622–1633

    Article  CAS  Google Scholar 

  • Lee CM, Kafle K, Belias DW, Park YB, Glick RE, Haigler CH, Kim SH (2015) Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose 22:971–989

    Article  CAS  Google Scholar 

  • Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Guo W, Zhang T (2009) Fiber initiation development in upland cotton (Gossypium hirsutum L.) cultivars varying in lint percentage. Euphytica 165:223–230

    Article  Google Scholar 

  • Liu Y (2015) Rapid and routine assessment of cotton fiber cellulose maturity: current and future trends. In: Mondel MIH (ed) Cellulose and cellulose derivatives: synthesis, modification and applications. Nova Science, New York, pp 17–25

    Google Scholar 

  • Liu Y, Kim HJ (2015) Use of attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy in direct, non-destructive, and rapid assessment of developmental cotton fibers grown in planta and in culture. Appl Spectrosc 69:1004–1010

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Kim HJ (2017) Fourier transform infrared spectroscopy (FT-IR) and simple algorithm analysis for rapid and non-destructive assessment of developmental cotton fibers. Sensors 17:1469

    Article  Google Scholar 

  • Liu Y, Thibodeaux D, Gamble G (2011) Development of Fourier transform infrared spectroscopy in direct, non-destructive, and rapid determination of cotton fiber maturity. Text Res J 81:1559–1567

    Article  CAS  Google Scholar 

  • Liu Y, Thibodeaux D, Gamble G, Bauer P, VanDerveer D (2012) Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity. Appl Spectrosc 66:983–986

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Thibodeaux D, Gamble G, Rodgers J (2014) Preliminary study of relating cotton fiber tenacity and elongation with crystallinity. Text Res J 84:1829–1839

    Article  CAS  Google Scholar 

  • Lord E (1956) Air flow through plugs of textile fibers part II. The micronaire test for cotton. J Text Inst Trans 47:T16–T47

    Article  Google Scholar 

  • Meinert MC, Delmer DP (1977) Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol 59:1088–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam S, Kim HJ, Condon BD, Hinchliffe DJ, Chang S, Mccarty JC Jr, Madison CA (2016) High resistance to thermal decomposition in brown cotton is linked to tannins and sodium content. Cellulose 23:1137–1152

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964a) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice types I, II, and III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964b) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paudel D, Hequet E, Abidi N (2013) Evaluation of cotton fiber maturity measurements. Ind Crop Prod 45:435–441

    Article  CAS  Google Scholar 

  • Peralta DV, Fortier CA, Thibodeaux D, Delhom CD, Rodgers JE III (2016) Separation and quantitation of plant and insect carbohydrate isomers found on the surface of cotton. AATCC J Res 3:13–23

    Article  CAS  Google Scholar 

  • Peralta DV, Fortier CA, Zumba J, Thibodeaux D, Delhom CD, Rodgers JE III (2017) Comparisons of minicard ratings to ion chromatography sugar profiles in cotton fiber water extract and minicard sticky spot material. Text Res J 87:747–758

    Article  CAS  Google Scholar 

  • Price JB, Cui XL, Calamari TA, Meredith WR (2002) Cotton wax and its relationship with fiber and yarn properties, part II: wax content and yarn properties. Text Res J 72:631–637

    Article  CAS  Google Scholar 

  • Rjiba N, Nardin M, Drean JY, Frydrych RA (2007) A study of the surface properties of cotton fibers by inverse gas chromatography. J Colloid Interface Sci 314:373–380

    Article  CAS  PubMed  Google Scholar 

  • Romano GB, Taliercio EW, Turley RB, Scheffler JA (2011) Fiber initiation in 18 cultivars and experimental lines of three Gossypium species. J Cotton Sci 15:61–72

    Google Scholar 

  • Santiago CM, Fortier CA, Hinchliffe DJ, Rodgers JE III (2017) Chemical imaging of secondary cell wall development in cotton fibers using a mid-infrared focal-plane array detector. Text Res J 87:1040–1051

    Article  CAS  Google Scholar 

  • Santiago CM, Hinchliffe DJ (2015) FT-IR examination of the development of secondary cell wall in cotton fibers. Fibers 3:30–40

    Article  CAS  Google Scholar 

  • Santiago CM, Hinchliffe DJ, Montalvo JG Jr, Von Hoven TM, Rodgers JE III, Thyssen GN, Zeng L, Madison CA (2016) Infrared imaging of cotton fiber bundles using a focal plane array detector and a single reflectance accessory. Fibers 4:27

    Article  Google Scholar 

  • Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 12:223–231

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1962) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  Google Scholar 

  • Singh B, Avci U, Eichler Inwood SE, Grimson MJ, Landgraf J, Mohnen D, Sorenson I, Wilkerson CG, Willats WGT, Haigler CH (2009) A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. Plant Physiol 150:684–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiff MR, Haigler CH (2012) Recent advances in cotton fiber development. In: Oosterhuis DM, Cothren JT (eds) Flowering and fruiting in cotton. The Cotton Foundation, Cordova, pp 163–192

    Google Scholar 

  • Thibodeaux DP, Evans JP (1986) Cotton fiber maturity by image analysis. Text Res J 56:130–139

    Article  Google Scholar 

  • Timpa JD, Triplett BA (1993) Analysis of cell-wall polymers during cotton fiber development. Planta 189:101–108

    Article  CAS  Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424

    Article  CAS  PubMed  Google Scholar 

  • Ãœreyen ME, Kadoglu H (2006) Regressional estimation of ring cotton yarn properties from HVI fiber properties. Text Res J 76:360–366

    Article  CAS  Google Scholar 

  • Viles FJ, Silverman L (1949) Determination of starch and cellulose with anthrone. Anal Chem 21:950–953

    Article  CAS  Google Scholar 

  • Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle AA, Goynes WR Jr, Edwards JV, Hunter L, Mcalister DD, Gamble GR (2007) Cotton fiber chemistry and technology. CRC Press, Boca Raton

    Google Scholar 

  • Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle AA, Goynes WR Jr, Edwards JV, Hunter L, Mcalister DD, Gamble GR (2007a) Cotton fiber chemistry and technology. CRC Press, Boca Raton, pp 11–14

    Google Scholar 

  • Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle AA, Goynes WR Jr, Edwards JV, Hunter L, Mcalister DD, Gamble GR (2007b) Cotton fiber chemistry and technology. CRC Press, Boca Raton, pp 15–20

    Google Scholar 

  • Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle AA, Goynes WR Jr, Edwards JV, Hunter L, Mcalister DD, Gamble GR (2007c) Cotton fiber chemistry and technology. CRC Press, Boca Raton, pp 23–68

    Google Scholar 

  • Wang C, Lv Y, Xu W, Zhang T, Guo W (2014) Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the im gene in immature fiber (im) mutant in Gossypium hirsutum L. BMC Genomics 15:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang S, Gordon S (2017) Accurate prediction of cotton ring-spun yarn quality from high-volume instrument and mill processing data. Text Res J 87:1025–1039

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongliang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y. (2018). Chemical Composition and Characterization of Cotton Fibers. In: Fang, D. (eds) Cotton Fiber: Physics, Chemistry and Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-00871-0_4

Download citation

Publish with us

Policies and ethics