Skip to main content

Physical Properties of Cotton Fiber and Their Measurement

  • Chapter
  • First Online:
Book cover Cotton Fiber: Physics, Chemistry and Biology

Abstract

Cotton fiber is a highly variable natural product. The economic and industrial value of cotton is directly related to the physical properties of the fibers. In marketing cotton, the length, strength, color grade, and micronaire of the fiber are of paramount importance. Researchers need to understand the market impact of fiber properties as well as the performance impact of these and additional properties such as fineness, maturity, neps, length distribution, and fiber cohesion. Additionally, it is important to understand the variability of these properties within a cotton sample. The distribution of the fiber properties also has an important role in the performance of a cotton. There are many ways to measure each of the properties of cotton fiber ranging from tedious manual methods, which often serve as the references for other methods, to high-speed instrumental methods. The advantages and disadvantages of the methods must be understood to properly apply the test methods and to interpret the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107:476–486

    Article  CAS  Google Scholar 

  • Anthony WS, Meredith WR, Williford JR (1988) Neps in ginned lint: the effect of varieties, harvesting, and ginning practices. Text Res J 58:633–639

    Article  Google Scholar 

  • Anthony WS (2002) Impact of moisture added at lint slide on cotton color, vol 103. Cotton Gin and Oil Mill Press, Mesquite, pp 8–12

    Google Scholar 

  • ASTM D1440-07 (2012) Standard test method for length and length distribution of cotton Fibers (Array method). ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D1442-06 (2016) Standard test method for maturity of cotton Fibers (sodium hydroxide swelling and polarized light procedures). ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D1445/1445M-12 (2016) Standard test method for breaking strength and elongation of cotton Fibers (flat bundle method). ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D1448-11 (2016) Standard test method for micronaire reading of cotton fibers. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D1464-12 (2016) Standard practice for differential dyeing behavior of cotton. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D1577-07 (2016) Standard test methods for linear density of textile fibers. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D1776/D1776M-16 (2016) Standard practice for conditioning and testing textiles. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D2612-99 (2016) Standard test method for fiber cohesion in sliver and top (static tests). ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D4120-01 (2016) Standard test method for fiber cohesion in roving, sliver, and top in dynamic tests. ASTM International. West, Conshohocken

    Google Scholar 

  • ASTM D5866-12 (2016) Standard test method for Neps in cotton fibers. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D5867-12e1 (2016) Standard test method for measurement of physical properties of raw cotton by cotton classification instruments. ASTM International, West Conshohocken

    Google Scholar 

  • Bange MP, Long RL, Constable GA, Gordon SG (2010) Minimizing immature fiber and neps in upland cotton. Agron J 102:781–789

    Article  Google Scholar 

  • Bargeron JD (1986) Preliminary investigation of the length measurement of cotton fibers with the Peyer Texlab system: compatibility and repeatability. Text Res J 56:121–123

    Article  Google Scholar 

  • Barker GL, McClendon RW, Colwick RF, Jones JW (1979) Relationship between cotton lint color and weather exposure. Trans ASAE 22:470–474

    Article  Google Scholar 

  • Boylston EK, Evans JP, Thibodeaux DP (1995) A quick embedding method for light microscopy and image analysis of cotton fibers. Biotech Histochem 70:24–27

    Article  CAS  Google Scholar 

  • Bradow JM, Hinojosa O, Wartelle LH, Davidonis G, Sassenrath-Cole GF, Bauer PJ (1996) Applications of AFIS fineness and maturity module and X-ray fluorescence spectroscopy in fiber maturity evaluation. Text Res J 66:545–554

    Article  CAS  Google Scholar 

  • Bragg CK, Shofner FM (1993) A rapid, direct measurement of short fiber content. Text Res J 63:171–176

    Article  Google Scholar 

  • Cai Y, Cui X, Rodgers J, Thibodeaux D, Martin V, Watson M, Pang S (2013) A comparative study of the effects of cotton fiber length parameters on modeling yarn properties. Text Res J 83:961–970

    Article  CAS  Google Scholar 

  • Chun DTW, McAlister DD, Hughs SE, Cobb DR (2006) Microbial census and evidence for a direct temporal effect of bale moisture on color grade during six months of storage. J Cotton Sci 10:201–209

    Google Scholar 

  • Cui X, Calamari TA, Suh M (1998) Theoretical and practical aspects of fiber length comparisons of various cottons. Text Res J 68:467–472

    Article  CAS  Google Scholar 

  • Cui X, Cai Y, Rodgers JE, Martin VB, Watson MD (2014) An investigation into the intra-sample variation in the color of cotton using image analysis. Text Res J 84:214–222

    Article  CAS  Google Scholar 

  • Delhom CD, Martin VB, Schreiner MK (2017) Textile industry needs. J Cotton Sci 21:210–219

    Google Scholar 

  • DIN 53806:1970-02 (1970) Testing of textiles; length determination for cotton with a comb sorter. DIN Deutsches Institut für Normung e.V., Berlin

    Google Scholar 

  • El Mogahzy Y, Broughton R, Guo H, Taylor RA (1998) Evaluating staple fiber processing propensity part 1: processing propensity of cotton fibers. Text Res J 68:835–840

    Article  Google Scholar 

  • Foulk JA, McAlister DD (2002) Single cotton fiber properties of low, ideal and high micronaire values. Text Res J 72:885–891

    Article  CAS  Google Scholar 

  • Frydrych I (1995) Relation of single fiber and bundle strengths of cotton. Text Res J 65:513–517

    Article  CAS  Google Scholar 

  • GB/T6098.1-1985 (1985) Test method of cotton fiber length using roller analyzer. Chinese Cotton Standard

    Google Scholar 

  • Ghosh S, Rodgers JE, Ortega AE (1992) Rotor ring measurement of fiber cohesion and bulk properties of staple fibers. Text Res J 62:608–613

    Article  Google Scholar 

  • Goldthwait CF, Smith HO, Barnett MP (1947) New dye technique shows maturity of cotton. Textile World July:105–110

    Google Scholar 

  • Gonsalves VE (1947) Determination of denier and strength of single filaments by vibroscope and Heim tensile tester. Text Res J 17:369–375

    Article  CAS  Google Scholar 

  • Gordon SG, van der Sluijs MHJ, Prins MW (2004) Quality issues for Australian cotton from a mill perspective. Australian Cotton Cooperative Research Centre, Narrabri

    Google Scholar 

  • Gordon S, Naylor G, Brims MA (2012) Cottonscope: a new instrument for maturity and fineness measurements. In: Proceedings of the 31st international cotton conference, March 2012, pp. 21–24

    Google Scholar 

  • Heap SA (2000). The meaning of micronaire. In: Proceedings of Bremen Cotton Conference, Bremen, Germany, p. 17

    Google Scholar 

  • Hebert JJ (1975) Effect of convolution angle upon fiber strength. Text Res J 45:356–357

    Article  Google Scholar 

  • Hebert JJ, Boylston EK, Thibodeaux DP (1988) Anatomy of a nep. Text Res J 58:380–382

    Article  Google Scholar 

  • Hebert JJ, Thibodeaux DP, Shofner FM, Singletary JK, Patelke DB (1995) A new single fiber tensile tester. Text Res J 65:440–444

    Article  Google Scholar 

  • Hequet EF, Wyatt B, Abidi N, Thibodeaux DP (2006) Creation of a set of reference material for cotton fiber maturity measurements. Text Res J 76:576–586

    Article  CAS  Google Scholar 

  • Hertel KL (1940) A method of fibre-length analysis using the fibrograph. Text Res J 10:510–525

    Article  Google Scholar 

  • Kozeny IJ (1927) Über Grundwasserbewegung. Wasserkraft und wasserwirtschaft 22:67

    Google Scholar 

  • Lin Q, Oxenham W, Yu C (2011) A study of the drafting force in roller drafting and its influence on sliver irregularity. J Text Inst 102:994–1001

    Article  Google Scholar 

  • Liu J, Hongbo Y, Hsieh Y (2001) Variations of mature cotton fiber tensile properties: association with seed position and fiber length. Text Res J 71:1079–1086

    Article  CAS  Google Scholar 

  • Long RL, Bange MP, Gordon SG, Constable GA (2010) Measuring the maturity of developing cotton fibers using an automated polarized light microscopy technique. Text Res J 80:463–471

    Article  CAS  Google Scholar 

  • Lord E (1948) Neppy cotton: origin and cure. Emp Cotton Grow 25:180–190

    Google Scholar 

  • Lord E (1955) Airflow through plugs of textile fibres, part 1 – general flow relations. J Text Inst 46:191–213

    Article  Google Scholar 

  • Lord E (1956) Airflow through plugs of textile fibres, part 2 – the micronaire test. J Text Inst 47:16–47

    Article  Google Scholar 

  • Mehta RD, Salame PA, Combs RN (1990) Dyeing of immature cotton neps covered with a cationic polymer. American Dyestuff Rep 79:38

    CAS  Google Scholar 

  • Meredith R (1953) Measurements of orientation in cotton fibres using polarized light. Br J Appl Phys 4(12):369

    Article  Google Scholar 

  • Montalvo JG, Von Hoven T (2004) Analysis of cotton. In: Near-infrared spectroscopy in agriculture. Agronomy monograph no. 44. Crop Science Society of America, Madison

    Google Scholar 

  • Montgomery DJ, Milloway WT (1952) The vibroscopic method for determination of fiber cross-sectional area. Text Res J 22:729–735

    Article  Google Scholar 

  • Naylor GR, Delhom CD, Cui X, Gourlot JP, Rodgers J (2014) Understanding the influence of fiber length on the High Volume Instrument™ measurement of cotton fiber strength. Text Res J 84:979–988

    Article  CAS  Google Scholar 

  • Nickerson D, Hunter RS, Powell MG (1950) New automatic colorimeter for cotton. J Optic Soc Am 40:446–449

    Article  CAS  Google Scholar 

  • Orr RS, Weiss LC, Grant JN (1955) The relation of single-fiber to flat-bundle strength and elongation of cotton. Text Res J 25:939–946

    Article  CAS  Google Scholar 

  • Pearson NL (1933) Neps and similar imperfections in cotton. USDA Tech Bull 396:23

    Google Scholar 

  • Pierce FT, Lord E (1939) The fineness and maturity of cotton. J Text Inst 30:173–210

    Article  Google Scholar 

  • Ramey HH (1982) Estimating quality components of natural fibers by near-infrared reflectance: part 1: cotton fiber cross-sectional area and specific surface. Text Res J 52:20–25

    Article  Google Scholar 

  • Rodgers JE, Thibodeaux DP, Cui X, Martin VB, Watson MD (2008) Instrumental and operational impacts on spectrophotometer color measurements. J Cotton Sci 12:287–297

    Google Scholar 

  • Rouse JT (1964) Cotton fiber strength tests at 1/8-inch gauge with pressley and stelometer instruments. Text Res J 34:908–910

    Article  Google Scholar 

  • Sasser PE, Shofner FM, Chu YT, Shofner CK, Townes MG (1991) Interpretations of single fiber, bundle, and yarn tenacity data. Text Res J 61:681–690

    Article  Google Scholar 

  • Stewart JM (1975) Fiber initiation on the cotton ovule (Gossypium hirsutum). Am J Bot 62:723–730

    Article  Google Scholar 

  • Thibodeaux DP, Rajasekaran K (1999) Development of new reference standards for cotton fiber maturity. J Cotton Sci 3:188–193

    Google Scholar 

  • Thibodeaux DP, Rodgers JE, Campbell JH, Knowlton J (2008a) The feasibility of relating HVI color standards to CIELAB coordinates. AATCC Rev 8:44–48

    CAS  Google Scholar 

  • Thibodeaux DP, Senter J, Knowton JL, McAlister D, Cui X (2008b) The impact of short fiber content on the quality of cotton ring spun yarn. J Cotton Sci 12:368–377

    Google Scholar 

  • Urquhart AR, Eckersall N (2008) 32 – the moisture relations of cotton. Vii – a study of hysteresis. J Text Inst Trans 21(10):T499–T510

    Article  Google Scholar 

  • van der Sluijs MHJ, Hunter L (1999) Neps in cotton lint. Text Prog 28(4):1–47

    Article  Google Scholar 

  • Xu B, Huang Y, Watson MD (2001) Cotton color distributions in the CIE L*a*b* system. Text Res J 71:1010–1015

    Article  CAS  Google Scholar 

  • Zeidman MI, Batra SK, Sasser PE (1991) Determining short fiber content in cotton part 1: some theoretical fundamentals. Text Res J 61:21–30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Delhom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delhom, C.D., Kelly, B., Martin, V. (2018). Physical Properties of Cotton Fiber and Their Measurement. In: Fang, D. (eds) Cotton Fiber: Physics, Chemistry and Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-00871-0_3

Download citation

Publish with us

Policies and ethics