Skip to main content

Image Data Processing to Obtain Fibre Orientation in Fibre-Reinforced Elements Using Computed Tomography Scan

  • Chapter
  • First Online:
Short Fibre Reinforced Cementitious Composites and Ceramics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 95))

Abstract

Computed tomography (CT) technique is of increasing interest in research related to concrete technology. This technology provides the possibility of visualize the internal structure of concrete, including pores, cracks, aggregates and fibres. In this paper, the CT scan is used to determine the position and orientation of the fibres in case of steel fibre reinforced high strength concrete elements (SFRHSC). This paper shows a home-made numerical procedure, automated through a MATLAB routine, which enables, fast and reliable, get the orientation of each and every one of the fibres and their center of gravity. The procedure shown can be used with any type of fibre reinforced material, with the only restriction that a wide difference between density of fibres and density of matrix is needed. The algorithm is simple and robust. The result is a fast algorithm and a routine easy to use. In addition, the validation tests show that the error is almost zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damme, S.V., Franchois, A., Zutter, D.D., Taerwe, L.: Nondestructive determination of the steel fiber content in concrete slabs with an open-ended coaxial probe. IEEE Trans. Geosci. Remote Sens. 42(11), 2511–2521 (2004). https://doi.org/10.1109/TGRS.2004.837332

    Article  Google Scholar 

  2. Eik, M., Herrmann, H.: Raytraced images for testing the reconstruction of fibre orientation distributions. Proc. Est. Acad. Sci. 61, 128–136 (2012). https://doi.org/10.3176/proc.2012.2.05

    Article  CAS  Google Scholar 

  3. Faifer, M., Ottoboni, R., Toscani, S., Ferrara, L.R.F.: A multielectrode measurement system for steel fiber reinforced concrete materials monitoring. In: Proceedings of IEEE Instrumentation Measurement Technology Conference, pp. 313–318. Singapore (2009)

    Google Scholar 

  4. Faifer, M., Ottoboni, R., Toscani, S., Ferrara, L.: Nondestructive testing of steel fiber reinforced concrete using a magnetic approach. IEEE Trans. Instrum. Meas. 60(5), 1709–1717 (2011)

    Article  Google Scholar 

  5. Herrmann, H., Pastorelli, E., Kallonen, A., Suuronen, J.P.: Methods for fibre orientation analysis of X-ray tomography images of steel fibre reinforced concrete (SFRC). J. Mater. Sci. 51(8), 3772–3783 (2016). https://doi.org/10.1007/s10853-015-9695-4

    Article  CAS  Google Scholar 

  6. Jianming, G., Wie, S., Keiji, M.: Mechanical properties of steel fiber reinforced high strength, lightweight concrete. Cement Concr. Compos. 19(4), 307–313 (1997)

    Article  Google Scholar 

  7. Kang, S., Park, J., Ryu, G., Kim, S.: Investigation of fiber alignment of UHSFRC in flexural members. In: Proceedings of 8th International Symposium on Utilization of High-Strength and High-Performance Concrete, pp. 709–714. Tokyo, Japan (2008)

    Google Scholar 

  8. Kang, S., Lee, B., Park, Y., Kim, J.: Tensile fracture properties of an ultra high performance fiber reinforced concrete (UHPFRC) with steel fiber. Compos. Struct. 92(1), 61–71 (2010)

    Article  Google Scholar 

  9. Kang, S., Lee, B., Kim, J., Kim, Y.Y.: The effect of fiber distribution characteristics on the flexural strength of steel fiber reinforced ultra high strength concrete. Constr. Build. Mater. 25(5), 2450–2457 (2011)

    Article  Google Scholar 

  10. Kaufmann, J., Frech, K., Schuetz, P., Münch, B.: Rebund and orientation of fibers in wet sprayed concrete application. Constr. Build. Mater. 49, 15–22 (2013)

    Article  Google Scholar 

  11. Kim, J., Kim, J., Ha, G., Kim, Y.: Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag. Cement Concr. Res. 37(7), 1096–1105 (2007)

    Article  CAS  Google Scholar 

  12. Krause, M., Hausherr, J., Burgeth, B., Herrmann, C., Krenkel, W.: Determination of the fibre orientation in composites using the structure tensor and local X-ray transform. J. Mater. Sci. 45(4), 888–896 (2010). https://doi.org/10.1007/s10853-009-4016-4

    Article  CAS  Google Scholar 

  13. Mangat, P.: Tensile strength of steel fiber reinforced concrete. Cement Concr. Res. 6(2), 245–252 (1976)

    Article  Google Scholar 

  14. Ozyurt, N., Mason, T.O., Shah, S.P.: Nondestructive monitoring of fiber orientation using AC-IS: an industrial-scale application. Cement Concr. Res. 36(9), 1653–1660 (2006a)

    Article  CAS  Google Scholar 

  15. Ozyurt, N., Woo, L., Mason, T.O., Shah, S.P.: Monitoring fiber dispersion in fiber reinforced cementitious materials: comparison of AC impedance spectroscopy and image analysis. ACI Mater. J. 103(5), 340–347 (2006b)

    Google Scholar 

  16. Pastorelli, E., Herrmann, H.: Time-efficient automated analysis for fibre orientations in steel fibre reinforced concrete. Proc. Est. Acad. Sci. 65(1), 28–36 (2016). https://doi.org/10.3176/proc.2016.1.02

    Article  Google Scholar 

  17. Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: Steel fibre spacing in self-compacting concrete precast walls by X-ray computed tomography. Mater. Struct. 48(12), 3863–3874 (2015a). https://doi.org/10.1617/s11527-014-0444-y

    Article  CAS  Google Scholar 

  18. Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: X-ray computed tomography harnessed to determine 3D spacing of steel fibres in self compacting concrete (SCC) slabs. Constr. Build. Mater. 74, 102–108 (2015b). https://doi.org/10.1016/j.conbuildmat.2014.10.024

    Article  Google Scholar 

  19. Schnell, J., Schladitz, K., Schuler, F.: Richtungsanalyse von fasern in betonen auf basis der computer-tomographie. Beton- und Stahlbetonbau 105(2), 72–77 (2010). https://doi.org/10.1002/best.200900055

    Article  Google Scholar 

  20. Song, P., Hwang, S.: Mechanical properties of high strength steel fiber reinforced concrete. Constr. Build. Mater. 18(9), 669–673 (2004)

    Article  Google Scholar 

  21. Stroeven, P., Hu, J.: Review paper—stereology: historical perspective and applicability to concrete technology. Mater. Struct. 39(1), 127–135 (2006). https://doi.org/10.1617/s11527-005-9031-6

    Article  CAS  Google Scholar 

  22. Suuronen, J.P., Kallonen, A., Eik, M., Puttonen, J., Serimaa, R., Herrmann, H.: Analysis of short fibres orientation in steel fibre reinforced concrete (SFRC) using X-ray tomography. J. Mater. Sci. 48(3), 1358–1367 (2013). https://doi.org/10.1007/s10853-012-6882-4

    Article  CAS  Google Scholar 

  23. Torrents, J., Mason, T., Peled, A., Shah, S., Garboczi, E.: Analysis of the impedance spectra of short conductive fiber-reinforced composites. J. Mater. Sci. 36(16), 4003–4012 (2001)

    Article  CAS  Google Scholar 

  24. Vicente, M., Minguez, J., González, D.: The use of computed tomography to explore the microstructure of materials in civil engineering: from rocks to concrete. In: Halefoglu, D.A.M. (ed.) Computed Tomography-Advanced Applications. InTech (2017). https://doi.org/10.5772/intechopen.69245

    Google Scholar 

  25. Woo, L., Wansom, S., Hixson, A., Campo, M.A., Mason, T.O.: A universal equivalent circuit model for the impedance response of composites. J. Mater. Sci. 38(10), 2265–2270 (2003)

    Google Scholar 

  26. Woo, L., Wansom, S., Ozyurt, N., Mu, B., Shah, S., Mason, T.O.: Characterizing fiber dispersion in cement composites using ac-impedance spectrometry. Cement Concr. Compos. 27(6), 627–636 (2005)

    Google Scholar 

  27. Yazici, S., Inan, G., Tabak, V.: Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Constr. Build. Mater. 21(6), 1250–1253 (2007)

    Article  Google Scholar 

  28. Žirgulis, G., Švec, O., Geiker, M.R., Cwirzen, A., Kanstad, T.: Influence of reinforcing bar layout on fibre orientation and distribution in slabs cast from fibre-reinforced self-compacting concrete (FRSCC). Struct. Concr. 17(2), 245–256 (2016). https://doi.org/10.1002/suco.201500064

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Mínguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mínguez, J., Vicente, M.A., González, D.C. (2019). Image Data Processing to Obtain Fibre Orientation in Fibre-Reinforced Elements Using Computed Tomography Scan. In: Herrmann, H., Schnell, J. (eds) Short Fibre Reinforced Cementitious Composites and Ceramics. Advanced Structured Materials, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-030-00868-0_8

Download citation

Publish with us

Policies and ethics