Skip to main content

An Initial Report on the Effect of the Fiber Orientation on the Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concrete

  • Chapter
  • First Online:
Short Fibre Reinforced Cementitious Composites and Ceramics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 95))

Abstract

This paper presents a report about work in progress of research on the influence of the fiber orientations on the tensile strength of steel fiber concrete. Different fiber orientations in different parts of a structural element are caused by the casting process. Here, as an example, a small plate was cast of self-compacting concrete containing hooked-end steel fibers. The plate was cut into three beams, which in turn have been subjected to X-ray Computed Tomography scanning to obtain fiber orientations and to three-point bending test, to assess the tensile strength and fracture behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eik, M., Lõhmus, K., Tigasson, M., Listak, M., Puttonen, J., Herrmann, H.: DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC. J. Mater. Sci. 48(10), 3745–3759 (2013)

    Article  CAS  Google Scholar 

  2. Herrmann, H.: An improved constitutive model for short fibre reinforced cementitious composites (SFRC) based on the orientation tensor. In: Generalized Continua as Models for Classical and Advanced Materials, pp. 213–227. Springer International Publishing, Cham (2016)

    Google Scholar 

  3. Laranjeira, F., Grünewald, S., Walraven, J., Blom, K., Molins, C., Aguadoa, A.: Characterization of the orientation profile in fiber reinforced concrete. Mater. Struct. 44(6), 1093–1111 (2011)

    Google Scholar 

  4. Žirgulis, G., Švec, O., Sarmiento, E.V., Geiker, M.R., Cwirzen, A., Kanstad, T.: Importance of quantification of steel fibre orientation for residual flexural tensile strength in FRC. Mater. Struct. 1–17 (2015)

    Google Scholar 

  5. Švec, O., Žirgulis, G., Bolander, J.E., Stang, H.: Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements. Cement Concr. Compos. 50, 60–72 (2014)

    Article  Google Scholar 

  6. Grünewald, S.: Performance-based design of self-compacting fibre reinforced concrete. Ph.D. thesis, Technische Universiteit Delft (2004)

    Google Scholar 

  7. Eik, M., Puttonen, J., Herrmann, H.: An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres. Compos. Struct. 121, 324–336 (2015)

    Article  Google Scholar 

  8. Eik, M., Herrmann, H., Puttonen, J.: Orthotropic constitutive model for steel fibre reinforced concrete: linear-elastic state and bases for the failure. In: Kouhia, R., Mäkinen, J., Pajunen, S., Saksala, T. (eds.) Proceedings of the XII Finnish Mechanics Days: 4–5 June 2015, Tampere, Finland, pp. 255–260 (2015)

    Google Scholar 

  9. Herrmann, H., Eik, M., Berg, V., Puttonen, J.: Phenomenological and numerical modelling of short fibre reinforced cementitious composites. Meccanica 49(8), 1985–2000 (2014)

    Article  Google Scholar 

  10. Krasnikovs, A., Kononova, O., Khabbaz, A., Machanovsky, E., Machanovsky, A.: Post-cracking behaviour of high strength fiber concrete prediction and validation. World Acad. Sci. Eng. Technol. 59, 988–992 (2011)

    Google Scholar 

  11. Eik, M., Puttonen, J., Herrmann, H.: The effect of approximation accuracy of the orientation distribution function on the elastic properties of short fibre reinforced composites. Compos. Struct. 148, 12–18 (2016)

    Article  Google Scholar 

  12. Herrmann, H., Beddig, M.: Tensor series expansion of a spherical function for use in constitutive theory of materials containing orientable particles. Proc. Est. Acad. Sci. 67(1), 73–92 (2018) (Open-Access CC-BY-NC 4.0)

    Article  Google Scholar 

  13. Kasper, T., Tvede-Jensen, B., Stang, H., Mjoernell, P., Slot, H., Vit, G., Thrane, L.N., Reimer, L.: Design guideline for structural applications of steel fibre reinforced concrete. Technical report, SFRC Consortium (2014)

    Google Scholar 

  14. Deutscher Ausschuss für Stahlbeton: DAfStb-Richtlinie. Beuth Verlag GmbH, Berlin (2010)

    Google Scholar 

  15. SIS.: Fibre concrete-design of fibre concrete structures (Swedish standard – SS 812310:2014) (2014)

    Google Scholar 

  16. ACI Committee 544.: 544.4r-88 design considerations for steel fiber reinforced concrete. Technical report, American Concrete Institute (2002)

    Google Scholar 

  17. ACI Committee 544.: 544.5r-10: Report on the physical properties and durability of fiber-reinforced concrete. Technical report, American Concrete Institute (2010)

    Google Scholar 

  18. SNIP.: 52-104-2006–steel fibre reinforced concrete structures design. Technical report, SNIP, Moskau (2007)

    Google Scholar 

  19. SNIP.: 52-104-2009–steel fibre reineorced concrete structures design. Technical report, SNIP, Moskau (2010)

    Google Scholar 

  20. Österreichische Bautechnikvereinigung. Richtlinie faserbeton, 2008. Österreichische Vereinigung für Beton- und Bautechnik

    Google Scholar 

  21. Fib.: Model Code 2010. International Federation for Structural Concrete (fib) (2012)

    Google Scholar 

  22. Ponikiewski, T., Gołaszewski, J., Rudzki, M., Bugdol, M.: Determination of steel fibres distribution in self-compacting concrete beams using x-ray computed tomography. Arch. Civil Mech. Eng. 15, 558–568 (2015)

    Article  Google Scholar 

  23. Promentilla, M.A.B., Sugiyama, T., Shimura, K.: Threedimensional imaging of cement-based materials with x-ray tomographic microscopy: visualization and quantification. In: International Conference. Microstructure Relat Durab Cem Compos, vol. 61, pp. 1357–1366 (2008)

    Google Scholar 

  24. Liu, J., Li, C., Liu, J., Cui, G., Yang, Z.: Study on 3D spatial distribution of steel fibers in fiber reinforced cementitious composites through micro-ct technique. Constr. Build. Mater. 48, 656–661 (2013)

    Article  Google Scholar 

  25. Pastorelli, E., Herrmann, H.: Time-efficient automated analysis for fibre orientations in steel fibre reinforced concrete. Proc. Est. Acad. Sci. 65(1), 28–36 (2016)

    Article  Google Scholar 

  26. Herrmann, H., Pastorelli, E., Kallonen, A., Suuronen, J.-P.: Methods for fibre orientation analysis of x-ray tomography images of steel fibre reinforced concrete (SFRC). J. Mater. Sci. 51(8), 3772–3783 (2016)

    Article  CAS  Google Scholar 

  27. Suuronen, J.-P., Kallonen, A., Eik, M., Puttonen, J., Serimaa, R., Herrmann, H.: Analysis of short fibres orientation in steel fibre reinforced concrete (SFRC) using x-ray tomography. J. Mater. Sci. 48(3), 1358–1367 (2013)

    Article  CAS  Google Scholar 

  28. Liu, J., Sun, W., Miao, C., Liu, J., Li, C.: Assessment of fiber distribution in steel fiber mortar using image analysis. J. Wuhan Univ. Technol. Mater. Sci. Ed. 27, 166–171 (2012)

    Article  CAS  Google Scholar 

  29. Ferrara, L., Faifer, M., Toscani, S.: A magnetic method for non destructive monitoring of fiber dispersion and orientation in steel fiber reinforced cementitious composites—Part 1: method calibration. Mater. Struct. 1–15 (2011)

    Google Scholar 

  30. Karhunen, K., Seppänen, A., Lehikoinen, A., Monteiro, P.J.M., Kaipio, J.P.: Electrical resistance tomography imaging of concrete. Cement Concr. Res. 40, 137–145 (2010)

    Article  CAS  Google Scholar 

  31. Torrents, J.M., Blanco, A., Pujadas, P., Aguado, A., Juan-García, P., Sánchez-Moragues, M.Á.: Inductive method for assessing the amount and orientation of steel fibers in concrete. Mater. Struct. 45(10), 1577–1592 (2012)

    Article  Google Scholar 

  32. Schickert, M.: Progress in ultrasonic imaging of concrete. Mater. Struct. 38, 807–815 (2005)

    Article  Google Scholar 

  33. Grigaliunas, P., Kringelis, T.: SCC flow induced steel fiber distribution and orientation, non-destructive inductive method. In: 11th European Conference on Non-Destructive Testing. Prague, Czech Republic (2014)

    Google Scholar 

  34. Zhou, B., Uchida, Y.: Fiber orientation in ultra high performance fiber reinforced concrete and its visualization. In: 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures (2013)

    Google Scholar 

  35. Svec, O., Skocek, J., Olesen, J.F., Stang, H.: Fibre reinforced self-compacting concrete flow simulations in comparison with l-box experiments using carbopol. In: 8th Rilem International Symposium on Fibre Reinforced Concrete (2012)

    Google Scholar 

  36. Rens, K.L., Wipf, T.J., Klaiber, F.W.: Review of nondestructive evaluation techniques of civil infrastructure. J. Perform. Constr. Facil. 11, 152–160 (1997)

    Article  Google Scholar 

  37. Akhtar, S: Review of nondestructive testing methods for condition monitoring of concrete structures. J. Constr. Eng. (2013)

    Google Scholar 

  38. Al-Mattarneh, H.: Electromagnetic quality control of steel fiber concrete. Constr. Build. Mater. 73, 350–356 (2014)

    Article  Google Scholar 

  39. Shah, A.A., Hirose, S.: Nonlinear ultrasonic investigation of concrete damaged under uniaxial compression step loading. J. Mater. Civil Eng. 11, 476–484 (2009)

    Article  CAS  Google Scholar 

  40. Grosse, C.U., Reinhardt, H.W., Finck, F.: Signal-based acoustic emission techniques in civil engineering. J. Mater. Civil Eng. 15, 274–279 (2003)

    Article  CAS  Google Scholar 

  41. Herrmann, H., Lees, A.: On the influence of the rheological boundary conditions on the fibre orientations in the production of steel fibre reinforced concrete elements. Proc. Est. Acad. Sci. 65(4), 408–413 (2016) (Open-Access CC-BY-NC 4.0)

    Article  Google Scholar 

  42. Herrmann, H., Goidyk, O., Braunbrück, A.: Influence of the flow of self-compacting steel fiber reinforced concrete on the fiber orientations, a report on work in progress. In: Short Fiber Reinforced Cementitious Composites and Ceramics. Springer (2018)

    Google Scholar 

  43. Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: Determination of 3D porosity in steel fibre reinforced SCC beams using x-ray computed tomography. Constr. Build. Mater. 68, 333–340 (2014)

    Article  Google Scholar 

  44. du Plessis, A., le Roux, S.G., Guelpa, A.: Comparison of medical and industrial x-ray computed tomography for non-destructive testing. Case Stud. Nondestruct. Test. Eval. 6, 17–25 (2016)

    Google Scholar 

  45. Vicente, M.A., González, D.C., Mínguez, J.: Determination of dominant fibre orientations in fibre-reinforced high-strength concrete elements based on computed tomography scans. Nondestruct. Test. Eval. 29(2), 164–182 (2014)

    Article  CAS  Google Scholar 

  46. Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: Steel fibre spacing in self-compacting concrete precast walls by x-ray computed tomography. Mater. Struct. 48(12), 3863–3874 (2015)

    Article  CAS  Google Scholar 

  47. Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: X-ray computed tomography harnessed to determine 3D spacing of steel fibres in self compacting concrete (SCC) slabs. Constr. Build. Mater. 74, 102–108 (2015)

    Article  Google Scholar 

  48. Minguez, M.A.V.J., Gonzalez, D.C.: Image data processing to obtain fibre orientation in fibre-reinforced elements using computed tomography scan. In Short Fiber Reinforced Cementitious Composites and Ceramics. Springer (2018)

    Google Scholar 

  49. ASTM International.: Standard test method for splitting tensile strength of cylindrical concrete specimens. Technical report, ASTM, 2004. Designation: C 496/C 496M – 04

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding by the Estonian Research Council by the exploratory research grant PUT1146.

We also thank Maria Kremsreiter who helped during her Erasmus+ internship at the Institute of Cybernetics. Therefore: With the support of the Erasmus+ programme of the European Union.

Thanks to E-Betoonelement, especially Aare Lessuk, Rasmus-R. Marjapuu and Sergei Graf, for preparing the experiment plate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Herrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herrmann, H., Braunbrück, A., Tuisk, T., Goidyk, O., Naar, H. (2019). An Initial Report on the Effect of the Fiber Orientation on the Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concrete. In: Herrmann, H., Schnell, J. (eds) Short Fibre Reinforced Cementitious Composites and Ceramics. Advanced Structured Materials, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-030-00868-0_3

Download citation

Publish with us

Policies and ethics