Skip to main content

Fail Safe Routing Algorithm for Green Wireless Nano Body Sensor Network (GWNBSN)

  • Chapter
  • First Online:

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

The design of reliable routing has become obligatory in case of wireless nano body sensor network. This chapter envisages the issues in reliable routing of green wireless nano body sensor network (GWNBSN). The concept of nano sensor network reduces the size of nodes and it is easy to implant inside the human body. The molecular communication realizes series of reliability issues during its communication with the nearby nodes. An unforeseen molecular burst or fast bloodstream could make the DNA molecules to be confused and misguided. A fail safe reliable routing is proposed which investigates the patient’s state and decides the mode of communication as molecular or electromagnetic. The network is made fault tolerant from lack of energy faults and intermittent faults by classifying the data packets based on the state of subject, and routing the packets by energy harvesting capabilities and terminal voltage of the battery. The hierarchical hidden Markov model (HHMM) acts as the decision-maker to switch the packet to the next hop. Thus, the performance of the given protocol is analyzed with different harvesting capabilities, exhibiting to be reliable and energy efficient in nature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G.W. Hanson, Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag. 53(11), 3426–3435 (2005)

    Article  Google Scholar 

  2. J. Jornet, I. Akyildiz, Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans. Wirel. Commun. 10(10), 32113221 (2011)

    Article  Google Scholar 

  3. I.F. Akyildiz, F. Brunetti, C. Blazquez, Nanonetworks: a new communication paradigm. J. Comput. Netw. (Elsevier) 52(12), 2260–2279 (2008)

    Article  Google Scholar 

  4. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey. J. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  5. M. Gregori, I.F. Akyildiz, A new nano network architecture using agellated bacteria and catalytic nanomotors. IEEE J. Select. Areas Commun. 28(4), 612–619 (2010)

    Article  Google Scholar 

  6. I.F. Akyildiz, Josep Miquel Jornet, Electromagnetic wireless nanosensor networks. Nano Commun Netw. (Elsevier) 1, 3–19 (2010)

    Article  Google Scholar 

  7. X. Li, J. Qian, L. Chen, Y. Zhu, Q. Fang, S. He, Nanoparticle assisted DNA nanosensor, in Optical Fiber Communication and Optoelectronics Conference, 2007 Asia, October 2007, pp. 84–86 (2007)

    Google Scholar 

  8. F. Vullum, D. Teeters, Investigation of lithium battery nanoelectrode arrays and their component nanobatteries. J. Power Sources 146(1–2), 804–808 (2005)

    Article  Google Scholar 

  9. N. Agoulmine, K. Kim, S. Kim, T. Rim, J.-S. Lee, M. Meyyappan, Enabling communication and cooperation in bio-nanosensor networks: toward innovative healthcare solutions. IEEE Wireless Commun. 19(5), 4251 (2012)

    Article  Google Scholar 

  10. Z.L. Wang, Towards self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv. Funct. Mater. 18(22), 3553–3567 (2008)

    Article  Google Scholar 

  11. R. Yang, Y. Qin, C. Li, G. Zhu, Z.L. Wang, Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Am. Chem. Soc. 9(3), 1201–1205 (2009)

    Google Scholar 

  12. J.M. Jornet, I.F. Akyildiz, Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Trans. Nanotechnol. 11(3), 570580 (2012)

    Article  Google Scholar 

  13. S. Misra, N. Islam, J. Mahapatro, J.J.P.C. Rodrigues, Green wireless body area nanonetworks: energy management and the game of survival. IEEE J. Biomed. Health Inform. 18(2), 467–475 (2014). https://doi.org/10.1109/JBHI.2013.2293503

    Article  Google Scholar 

  14. C.R. Yonzon, D.A. Stuart, X. Zhang, A.D. McFarland, C.L. Haynes, R.P.V. Duyne, Towards advanced chemical and biological nanosensors an overview. Talanta 67(3), 438–448 (2005)

    Article  Google Scholar 

  15. C. Hierold, A. Jungen, C. Stampfer, T. Helbling, Nano electromechanical sensors based on carbon nanotubes. Sensors Actuators A Phys. 136(1), 51–61 (2007)

    Article  Google Scholar 

  16. C. Roman, F. Ciontu, B. Courtois, Single molecule detection and macro-molecular weighting using an all-carbon-nanotube nano electromechanical sensor, in 4th IEEE Conference on Nanotechnology, August 2004, pp. 263–266

    Google Scholar 

  17. O. Leenaerts, B. Partoens, F. Peeters, Adsorption of small molecules on graphene. Microelectron. J. 40(4–5), 860–862 (2009)

    Article  Google Scholar 

  18. A. Ranzoni, J.J. Schleipen, L.J. van IJzendoorn, M.W. Prins, Frequency-selective rotation of two-particle nanoactuators for rapid and sensitive detection of biomolecules. Nano Lett. 11(5), 2017–2022 (2011)

    Article  Google Scholar 

  19. T. Suda, M. Moore, T. Nakano, R. Egashira, A. Enomoto, Exploratory research on molecular Communication between nanomachines, in Genetic and Evolutionary Computation Conference (GECCO), Late Breaking Papers, Jun 2005

    Google Scholar 

  20. L. Parcerisa, I.F. Akyildiz, Molecular communication options for long range nanonetworks. J. Comput. Netw. (Elsevier) 53(16), 2753–2766 (2009)

    Article  Google Scholar 

  21. G.R. Kanagachidambaresan, A. Chitra, Fail safe fault tolerant mechanism for wireless body sensor network. Wireless Pers. Commun. J. 79, 247–260 (2014)

    Google Scholar 

  22. S. Modi, C. Nizak, S. Surana, S. Halder, Y. Krishnan, Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nano. 8(6), 459467 (2013)

    Article  Google Scholar 

  23. M. Pierobon, I.F. Akyildiz, Information capacity of diffusion-based molecular communication in nanonetworks, in 2011 Proceedings of the IEEE International Conference Computer Communication, p. 506510 (2011)

    Google Scholar 

  24. S. Balasubramaniam, P. Lio, Multi-hop conjugation based bacteria nanonetworks. IEEE Trans. Nano Biosci. 12(1), 4759 (2013)

    Google Scholar 

  25. S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, T. Nakano, Molecular communication. J. Inst. Electron. Info. Commun. Eng. 89(2), 162 (2006)

    Google Scholar 

  26. T. Nakano, M.J. Moore, F. Wei, A.V. Vasilakos, J. Shuai, Molecular communication and networking: opportunities and challenges. IEEE Trans. Nano Biosci. 11(2), 135148 (2012)

    Google Scholar 

  27. G. Piro, G. Boggia, L.A. Grieco, On the design of an energy harvesting stack for body area nano-NETworks, Accepted, Nano Commun. Netw. https://doi.org/10.1016/j.nancom.2014.10.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanagachidambaresan, G.R., Maheswar, R., Jayaparvathy, R., Thampi, S.M., Mahima, V. (2019). Fail Safe Routing Algorithm for Green Wireless Nano Body Sensor Network (GWNBSN). In: Maheswar, R., Kanagachidambaresan, G., Jayaparvathy, R., Thampi, S. (eds) Body Area Network Challenges and Solutions. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-00865-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00865-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00864-2

  • Online ISBN: 978-3-030-00865-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics