Skip to main content

Environmental Assessment of Solid Biofuels

  • Chapter
  • First Online:
Advances in Solid Biofuels

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The management of biomass feedstock and the production of solid biofuels must be performed in line with the principles of sustainable development which is in line with the global effort for the mitigation of GHG emissions and the climate change effects. The achievement of sustainable development is based on the concurrent development of the three interrelated pillars of sustainability, namely environmental, economic, and social pillar. This chapter examines the main aspects of the environmental assessment of solid biofuels, based on the life cycle assessment approach. The main aspects of life cycle assessment are provided, including the goal and scope of solid biofuels environmental assessment studies, the inventory and the impact assessment of the life cycle of solid biofuels production, as well as best practices in the interpretation of the findings of such studies. Selected case studies of solid biofuels life cycle assessment are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, P. W. R., Mezzullo, W. G., & McManus, M. C. (2015). Biomass sustainability criteria: Greenhouse gas accounting issues for biogas and biomethane facilities. Energy Policy, 87, 95–109.

    Article  Google Scholar 

  • Andrić, I., Jamali-Zghal, N., Santarelli, M., Lacarrière, B., & Le Corre, O. (2015). Environmental performance assessment of retrofitting existing coal fired power plants to co-firing with biomass: Carbon footprint and emergy approach. Journal of Cleaner Production, 103, 13–27.

    Article  Google Scholar 

  • ANL. (2014). GREET. The greenhouse gases, regulated emissions, and energy use in transportation (GREET) model. Retrieved from https://greet.es.anl.gov

  • Bare, J. C., Norris, G. A., Pennington, D. W., & Mc Kone, T. (2003). TRACI: The tool for the reduction and assessment of chemical and other environmental impacts. Journal of Industrial Ecology, 6(3), 49–78.

    Google Scholar 

  • Brand, G., Braunschweig, A., Scheidegger, A., & Schwank, O. (1998). Weighting in ecobalances with the ecoscarcity method—Ecofactors 1997, BUWAL (SAFEL) Environment Series No. 297, Bern.

    Google Scholar 

  • Buytaert, V., Muys, B., Devriendt, N., Pelkmans, L., Kretzschmar, J. G., & Samson, R. (2011). Towards integrated sustainability assessment for energetic use of biomass: A state of the art evaluation of assessment tools. Renewable and Sustainable Energy Reviews, 15, 3918–3933.

    Article  Google Scholar 

  • Cherubini, F., & Strømman, A. H. (2011). Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresource Technology, 102, 437–451.

    Article  Google Scholar 

  • Cherubini, F., Bird, N. D., Cowie, A., Jungmeier, G., Schlamadinger, B., & Woess-Gallasch, S. (2009). Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resources, Conservation and Recycling, 53, 434–447.

    Article  Google Scholar 

  • Christoforou, E. A., & Fokaides, P. A. (2016). Life cycle assessment (LCA) of olive husk torrefaction. Renewable Energy, 90, 257–266.

    Article  Google Scholar 

  • Dreyer, L. C., Niemann, A. L., & Hauschild, M. Z. (2003). Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-Indicator 99. Does it matter which one you choose? International Journal of Life Cycle Assessment, 8(4), 191–200.

    Article  Google Scholar 

  • Ecoinvent Centre. (2017). Ecoinvent data v3.0. Retrieved February 26, 2017, from http://www.ecoinvent.org

  • European Commission. (2010). Report from the Commission on sustainability requirements for the use of solid and gaseous biomass sources in electricity, heating and cooling. SEC (2010) 65.

    Google Scholar 

  • European Life Cycle Database (ELCD). (2006). Joint Research Center. Retrieved February 26, 2017, from http://eplca.jrc.ec.europa.eu/ELCD3/

  • Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinιe, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in life cycle assessment. Journal of Environmental Management, 91, 1–21.

    Article  Google Scholar 

  • Fokaides, P. A., & Christoforou, E. (2016). Life cycle sustainability assessment of biofuels. In Handbook of biofuels production (2nd ed., pp. 41–60).

    Google Scholar 

  • Goedkoop, M., & Spriensma, R. (2001, June). EcoFindicator 99, a damage oriented method for life cycle impact assessment, methodology report (3rd ed.). The Netherlands: Ministry of Housing, Spatial Planning and the Environment.

    Google Scholar 

  • Guinée, J. B. (Ed.). (2002). Handbook on life cycle assessment. Operational guide to the ISO standards. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • International Organization for Standardization (ISO). (2006a). ISO 14040:2006: Environmental management—Life cycle assessment—Principles and framework.

    Google Scholar 

  • International Organization for Standardization (ISO). (2006b). ISO 14044:2006. Environmental management—Life cycle assessment—Requirements and guidelines.

    Google Scholar 

  • Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment, 8(6), 324–330.

    Article  Google Scholar 

  • Kylili, A., Christoforou, E., & Fokaides, P. A. (2016). Environmental evaluation of biomass pelleting using life cycle assessment. Biomass and Bioenergy, 84, 107–117.

    Article  Google Scholar 

  • Laschi, A., Marchi, E., & González-García, S. (2016). Environmental performance of wood pellets’ production through life cycle analysis. Energy, 103, 469–480.

    Article  Google Scholar 

  • Lu, W., & Zhang, T. (2010). Life-cycle implications of using crop residues for various energy demands in China. Environmental Science & Technology, 44(10), 4026–4032.

    Article  Google Scholar 

  • McManus, M. C., & Taylor, C. M. (2015). The changing nature of life cycle assessment. Biomass and Bioenergy, 82, 13–26.

    Article  Google Scholar 

  • Menten, F., Chèze, B., Patouillard, L., & Bouvart, F. (2013). A review of LCA greenhouse gas emissions results for advanced biofuels: The use of meta-regression analysis. Renewable and Sustainable Energy Reviews, 26, 108–134.

    Article  Google Scholar 

  • Rathore, D., Nizami, A. S., Singh, A., & Pant, D. (2016). Key issues in estimating energy and greenhouse gas savings of biofuels: Challenges and perspectives. Biofuel Research Journal, 10, 380–393. https://doi.org/10.18331/BRJ2016.3.

    Article  Google Scholar 

  • Recipe. (2017). Retrieved February 23, 2017, from www.lcia-recipe.net

  • Reinhard, J., & Zah, R. (2011). Consequential life cycle assessment of the environmental impacts of an increased rapemethylester (RME) production in Switzerland. Biomass and Bioenergy, 35, 2361–2373.

    Article  Google Scholar 

  • Rosenbaum, R. K., Bachmann, T. K., Gold, L. S., Huijbregts, M. A. J., Jolliet, O., Juraske, R., Koehler, A., Larsen, H. F., MacLeod, M., Margni, M., McKone, T. E., Payet, J., Schuhmacher, M., Van de Meent, D., & Hauschild, M. Z. (2008). USEtox—The UNEP/SETAC-consensus model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in Life Cycle Impact Assessment. International Journal of Life Cycle Assessment, 13(7), 532–534.

    Google Scholar 

  • Silva Lora, E. E., Escobar Palacio, J. C., Rocha, M. H., Grillo Renó, M. L., Venturini, O. J., & del Olmo, O. A. (2011). Issues to consider, existing tools and constraints in biofuels sustainability assessments. Energy, 36, 2097–2110.

    Article  Google Scholar 

  • Tsalidis, G. A., Joshi, Y., Korevaar, G., & de Jong, W. (2014). Life cycle assessment of direct co-firing of torrefied and/or pelletised woody biomass with coal in The Netherlands. Journal of Cleaner Production, 81, 168–177.

    Article  Google Scholar 

  • U.S. Life Cycle Inventory Database. (2012). National Renewable Energy Laboratory, 2012. Retrieved February 26, 2017, from https://www.lcacommons.gov/nrel/search

  • Welfle, A., Gilbert, P., Thornley, P., & Stephenson, A. (2017). Generating low-carbon heat from biomass: Life cycle assessment of bioenergy scenarios. Journal of Cleaner Production, 149, 448–460.

    Article  Google Scholar 

  • ZuwaÅ‚a, J. (2012). Life cycle approach for energy and environmental analysis of biomass and coal co-firing in CHP plant with backpressure turbine. Journal of Cleaner Production, 35, 164–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christoforou, E., Fokaides, P.A. (2019). Environmental Assessment of Solid Biofuels. In: Advances in Solid Biofuels. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-00862-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00862-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00861-1

  • Online ISBN: 978-3-030-00862-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics