Skip to main content

Biomass Raw Material

  • Chapter
  • First Online:
Advances in Solid Biofuels

Part of the book series: Green Energy and Technology ((GREEN))

  • 437 Accesses

Abstract

Bioenergy can be generated from various biomass feedstocks such as wood, energy crops, and biomass residues derived from timber processing, agriculture, or forestry. Furthermore, animal wastes algae, as well as the organic component of municipal and industrial wastes consist an important source of biomass potential. This chapter presents the main biomass sources as well as the dominant classification processes for solid biofuels. The classification of woody, herbaceous, and fruit and aquatic biomass in accordance with the relevant EN standards is elaborated. The second section of this chapter presents the procedures of the testing procedures in accordance with European standards for the elemental and proximal assessment of solid biomass and solid biofuels; existing databases on biomass characteristics are also referred. The chapter concludes with the best practices employed for the estimation and quantification of biomass potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alakangas, E., Koponen, K., Sokka, L., & Keränen, J. (2015). Classification of used wood to biomass fuel or solid recycled fuel and cascading use in Finland. In Book of proceeding bioenergy (pp. 79–86).

    Google Scholar 

  • Angelis-Dimakis, A., Biberacher, M., Dominguez, J., Fiorese, G., Gadocha, S., Gnansounou, E., Guariso, G., Kartalidis, A., Panichelli, L., Pinedo, I., & Robba, M. (2011). Methods and tools to evaluate the availability of renewable energy sources. Renewable and Sustainable Energy Reviews, 15, 1182–1200.

    Article  Google Scholar 

  • Batidzirai, B., Smeets, E. M. W., & Faaij, A. P. C. (2012). Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments. Renewable and Sustainable Energy Reviews, 16, 6598–6630.

    Article  Google Scholar 

  • Batidzirai, B., Mignot, A. P. R., Schakel, W. B., Junginger, H. M., & Faaij, A. P. C. (2013). Biomass torrefaction technology: Techno-economic status and future prospects. Energy, 62, 196–214.

    Article  Google Scholar 

  • Berndes, G., Hoogwijk, M., & Van den Broek, R. (2003). The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass and Bioenergy, 25, 1–28.

    Article  Google Scholar 

  • Christoforou, E. A., & Fokaides, P. A. (2015). A review of quantification practices for plant-derived biomass potential. International Journal of Green Energy, 12, 368–378.

    Article  Google Scholar 

  • Demirbas, A. (2001). Relationships between lignin contents and heating values of biomass. Energy Conversion and Management, 42(2), 183–188.

    Article  Google Scholar 

  • Demirbas, A. (2004). Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science, 30, 219–230.

    Article  Google Scholar 

  • EN ISO 17225-1:2014. Solid biofuels—Fuel specifications and classes—Part 1: General requirements.

    Google Scholar 

  • EN ISO 18134:2015. Solid biofuels—Determination of moisture content—Oven dry method—Part 1: Total moisture—Reference method.

    Google Scholar 

  • EN ISO 18122:2015. Solid biofuels—Determination of ash content.

    Google Scholar 

  • EN ISO 18123:2015. Solid biofuels—Determination of the content of volatile matter.

    Google Scholar 

  • EN 14918:2009. Solid biofuels. Determination of calorific value.

    Google Scholar 

  • ISO 18125:2015. Solid biofuels—Determination of calorific value.

    Google Scholar 

  • EN ISO 16948:2015. Solid biofuels—Determination of total content of carbon, hydrogen and nitrogen.

    Google Scholar 

  • EN ISO 16994:2015. Solid biofuels—Determination of total content of sulfur and chlorine.

    Google Scholar 

  • EN ISO 16967:2015. Solid biofuels—Determination of major elements—Al, Ca, Fe, Mg, P, K, Si, Na and Ti.

    Google Scholar 

  • EN ISO 16968:2015. Solid biofuels—Determination of minor elements.

    Google Scholar 

  • CEN/TS 15370:2006. Solid biofuels. Method for the determination of ash melting behaviour. Characteristic temperatures method.

    Google Scholar 

  • EN ISO 17831:2015. Solid biofuels—Determination of mechanical durability of pellets and briquettes—Part 1: Pellets.

    Google Scholar 

  • EN ISO 17829:2015. Solid Biofuels—Determination of length and diameter of pellets.

    Google Scholar 

  • EN ISO 17827-1:2016. Solid biofuels—Determination of particle size distribution for uncompressed fuels—Part 1: Oscillating screen method using sieves with apertures of 3,15 mm and above.

    Google Scholar 

  • EN ISO 17827-2:2016. Solid biofuels—Determination of particle size distribution for uncompressed fuels—Part 2: Vibrating screen method using sieves with aperture of 3,15 mm and below.

    Google Scholar 

  • EN ISO 17828:2015. Solid biofuels—Determination of bulk density.

    Google Scholar 

  • EN ISO 17830:2016. Solid biofuels—Particle size distribution of disintegrated pellets.

    Google Scholar 

  • Energy Research Centre of the Netherlands. Phyllis2, database for biomass and waste. Retrieved from http://www.ecn.nl/phyllis2

  • Gonzalez-Salazar, M. A., Venturini, M., Poganietz, W. R., Finkenrath, M., & Spina, P. R. (2016). Methodology for improving the reliability of biomass energy potential estimation. Biomass and Bioenergy, 88, 43–58.

    Article  Google Scholar 

  • Gómez, A., Zubizarreta, J., Rodriguez, M., Dopazo, C., & Fueyo, N. (2010). An estimation of the energy potential of agro-industrial residues in Spain. Resources, Conservation and Recycling, 54, 972–984.

    Article  Google Scholar 

  • Haberl, H., Beringer, T., Bhattacharya, S. C., Erb, K. H., & Hoogwijk, M. (2010). The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability, 2(6), 394–493.

    Article  Google Scholar 

  • Hoogwijk, M., Faaij, A., van den Broek, R., Berndes, G., Gielen, D., & Turkenburg, W. (2003). Exploration of the ranges of the global potential of biomass for energy. Biomass and Bioenergy, 25(2), 119–133.

    Article  Google Scholar 

  • IEA Bioenergy Task 32 Biomass Database. Retrieved from www.ieabcc.nl

  • Long, H., Li, X., Wang, H., & Jia, J. (2013). Biomass resources and their bioenergy potential estimation: A review. Renewable and Sustainable Energy Reviews, 26, 344–352.

    Article  Google Scholar 

  • McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83, 37–46.

    Article  Google Scholar 

  • Offermann, R., Seidenberger, T., Thrän, D., Kaltschmitt, M., Zinoviev, S., & Miertus, S. (2011). Assessment of global bioenergy potentials. Mitigation and Adaptation Strategies for Global Change, 16, 103–115.

    Article  Google Scholar 

  • Reisinger, K. et al. (1996). BIOBIB—A database for biofuels. THERMIE-Conference: Renewable Energy Databases, Harwell (United Kingdom).

    Google Scholar 

  • Scarlat, N., Martinov, M., & Dallemand, J. (2010). Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Management, 30, 1889–1897.

    Article  Google Scholar 

  • Smeets, E. M. W., Faaij, A. P. C., Lewandowski, I. M., & Turkenburg, W. C. (2007). A bottom-up assessment and review of global bio-energy potentials to 2050. Progress in Energy and Combustion Science, 33, 56–106.

    Article  Google Scholar 

  • Smeets, E. M. W., Lemp, D., Dees, M., van den Berg, D., Böttcher, H., Domac, J., et al. (2010). Methods & data sources for biomass resource assessments for energy, deliverable D4.5 & D4.6 (p. 272). Biomass Energy Europe.

    Google Scholar 

  • Sustainable Energy Research Group. (2015a). Retrieved from https://youtu.be/6UR_5zF83Uo

  • Sustainable Energy Research Group. (2015b). Retrieved from https://youtu.be/RzAPQPWOlNI

  • Sustainable Energy Research Group. (2015c). Retrieved from https://youtu.be/hHPseal7puQ

  • Thrän, D., Seidenberger, T., Zeddies, J., & Offermann, R. (2010). Global biomass potentials—Resources, drivers and scenario results. Energy for Sustainable Development, 14, 200–205.

    Article  Google Scholar 

  • Van Loo, S., & Koppejan, J. (2008). Handbook of biomass combustion and co-firing. London: Earthscan.

    Google Scholar 

  • Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913–933.

    Article  Google Scholar 

  • Yamamoto, H., Fujino, J., & Yamaji, K. (2001). Evaluation of bioenergy potential with a multi-regional global-land-use-and-energy model. Biomass and Bioenergy, 21, 185–203.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christoforou, E., Fokaides, P.A. (2019). Biomass Raw Material. In: Advances in Solid Biofuels. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-00862-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00862-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00861-1

  • Online ISBN: 978-3-030-00862-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics