Skip to main content

Perioperative Lung Injury

  • Chapter
  • First Online:

Abstract

Traditional patterns of mechanical ventilation with large (e.g., 10–12 mL/kg) tidal volumes and without positive end-expiratory pressure (PEEP) cause a subclinical injury in healthy lungs in proportion to the duration of ventilation. Perioperative acute lung injury becomes clinically important when injurious ventilation patterns are used in patients who have other concomitant lung injuries such as large pulmonary resection, cardiopulmonary bypass, or transfusion-related lung injury. Lung-protective patterns of mechanical ventilation, using more physiologic tidal volumes and appropriate PEEP, reduce the severity of this lung injury. A recent decrease in the incidence of lung injury after pulmonary resection is primarily due to a decrease in the frequency of pneumonectomies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ARDS Definition Task Force. Acute respiratory distress syndrome, the Berlin Definition. JAMA. 2012;307:2526–33.

    Google Scholar 

  2. Licker M, Widikker I, Robert J, et al. Operative mortality and respiratory complications after lung resection for cancer: impact of chronic obstructive pulmonary disease and time trends. Ann Thorac Surg. 2006;81:1830–8.

    Article  PubMed  Google Scholar 

  3. Alam N, Park BM, Wilton A, et al. Incidence and risk factors for lung injury after lung cancer resection. Ann Thorac Surg. 2007;84:1085–91.

    Article  PubMed  Google Scholar 

  4. Bendixen HH, Hedley-White J, Laver MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation: a concept of atelectasis. N Engl J Med. 1963;96:156–66.

    Google Scholar 

  5. Tenny SM, Remmers JE. Comparative quantitative morphology of the mammalian lung: diffusing area. Nature. 1963;197:54–6.

    Article  Google Scholar 

  6. Katz JA, Laverne RG, Fairley HB, Thomas AN. Pulmonary oxygen exchange during endobronchial anesthesia: effect of tidal volume and PEEP. Anesthesiology. 1982;56:164–71.

    Article  CAS  PubMed  Google Scholar 

  7. Karzai W, Schwarzkopf K. Hypoxemia during one-lung ventilation. Anesthesiology. 2009;110:1402–11.

    Article  PubMed  Google Scholar 

  8. Gajic O, Dara SI, Mendez JL, et al. Ventilator associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–24.

    Article  PubMed  Google Scholar 

  9. Gajic O, Frutos-Vivar F, Esteban A, et al. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intens Care Med. 2005;31:922–6.

    Article  Google Scholar 

  10. Michelet P, D’Journo X-B, Roch A, et al. Protective ventilation influences systemic inflammation after esophagectomy. Anesthesiology. 2006;105:911–9.

    Article  PubMed  Google Scholar 

  11. Choi G, Wolthuis EK, Bresser P, et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology. 2006;105:689–95.

    Article  PubMed  Google Scholar 

  12. Lindberg P, Gunnarsson L, Tokics L, et al. Atelectasis and lung function in the postoperative period. Acta Anaesthesiol Scand. 1992;36:546–53.

    Article  CAS  PubMed  Google Scholar 

  13. Tusman G, Bohm SH, Suarez-Sipmann F. Alveolar recruitment improves ventilatory efficiency of the lungs during anesthesia. Can J Anesth. 2004;51:723–7.

    Article  PubMed  Google Scholar 

  14. Duggan M, Kavanagh B. Pulmonary Atelectasis a pathological perioperative entity. Anesthesiology. 2005;102:838–54.

    Article  PubMed  Google Scholar 

  15. Tsuchida S, Engelberts D, Peltekova V, et al. Atelectasis causes alveolar injury in nonatelectatic lung regions. Am J Respir Crit Care Med. 2006;174:279–89.

    Article  PubMed  Google Scholar 

  16. Ballantyne JC, Carr DB, deFerranti S. The comparative effects of postoperative analgesic therapies on pulmonary outcome: cumulative meta-analysis of randomized, controlled trials. Anesth Analg. 1998;86:598–612.

    Article  CAS  PubMed  Google Scholar 

  17. Rigg J, Jamrozik K, Myles P, et al. Epidural anaesthesia and analgesia and outcome of major surgery: a randomized trial. Lancet. 2002;359:1276–82.

    Article  PubMed  Google Scholar 

  18. Squadrone V, Coha M, Cerutti E, et al. Continuous positive airway pressure for treatment of postoperative hypoxemia. JAMA. 2005;293:589–95.

    Article  CAS  PubMed  Google Scholar 

  19. Grichnik KP, D’Amico TA. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Sem Cardiothorac Vasc Anesth. 2004;8:317–34.

    Article  Google Scholar 

  20. Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and collapsed lung. Anesth Analg. 2015;121:302–18.

    Article  PubMed  Google Scholar 

  21. Zeldin RA, Normadin D, Landtwing BS, Peters RM. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87:359–65.

    CAS  PubMed  Google Scholar 

  22. Slinger P. Post-pneumonectomy pulmonary edema: is anesthesia to blame? Curr Opin Anesthesiol. 1999;12:49–54.

    Article  CAS  Google Scholar 

  23. Turnage WS, Lunn JL. Postpneumonectomy pulmonary edema. A retrospective analysis of associated variables. Chest. 1993;103:1646–50.

    Article  CAS  PubMed  Google Scholar 

  24. Waller DA, Gebitekin C, Saundres NR, Walker DR. Noncardiogenic pulmonary edema complicating lung resection. Ann Thorac Surg. 1993;55:140–3.

    Article  CAS  PubMed  Google Scholar 

  25. Keegan MT, Harrison BA, De Ruyter ML, Deschamps C. Post-pneumonectomy pulmonary edema are we making progress? Anesthesiology. 2004;101:A431.

    Google Scholar 

  26. Licker M, De Perrot M, Spiliopoulos A, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97:1558–65.

    Article  PubMed  Google Scholar 

  27. Padley SPG, Jordan SJ, Goldstraw P, et al. Asymmetric ARDS following pulmonary resection. Radiology. 2002;223:468–73.

    Article  PubMed  Google Scholar 

  28. Waller DA, Keavey P, Woodfine L, Dark JH. Pulmonary endothelial permeability changes after major resection. Ann Thorac Surg. 1996;61:1435–40.

    Article  CAS  PubMed  Google Scholar 

  29. Williams EA, Quinlan GJ, Goldstraw P, et al. Postoperative lung injury and oxidative damage in patients undergoing pulmonary resection. Eur Respir J. 1998;11:1028–34.

    Article  CAS  PubMed  Google Scholar 

  30. Tayama K, Takamori S, Mitsuoka M, et al. Natriuretic peptides after pulmonary resection. Ann Thorac Surg. 2002;73:1582–6.

    Article  PubMed  Google Scholar 

  31. Misthos P, Katsaragikis A, Milingos N, et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg. 2005;27:379–83.

    Article  CAS  PubMed  Google Scholar 

  32. Stewart DJ, Martin-Uncar AE, Edwards JG, et al. Extra-pleural pneumonectomy for malignant mesothelioma: the risks of induction chemotherapy, right-sided procedures and prolonged operations. Eur J Cardiothorac Surg. 2005;27:373–8.

    Article  PubMed  Google Scholar 

  33. Boker A, Haberman C, Girling L, et al. Variable ventilation improves perioperative lung function in patients undergoing abdominal aortic aneurysmectomy. Anesthesiology. 2004;100:608–16.

    Article  PubMed  Google Scholar 

  34. Mols G, Priebe H-J, Guttmann. Alveolar recruitment in acute lung injury. Br J Anaesth 2006, 96: 156–166

    Article  CAS  PubMed  Google Scholar 

  35. Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary edema. Am Rev Respir Dis. 1988;137:1159–64.

    Article  CAS  PubMed  Google Scholar 

  36. Slinger P, Hickey DR. The interaction between applied PEEP and auto-PEEP during one-lung ventilation. J Cardiothorac Vasc Anesth. 1998;12:133–6.

    Article  CAS  PubMed  Google Scholar 

  37. Capan LM, Turndorf H, Patel C, et al. Optimization of arterial oxygenation during one-lung anesthesia. Anesth Analg. 1980;59:847–51.

    CAS  PubMed  Google Scholar 

  38. Slinger P, Kruger M, McRae K, Winton T. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung. Anesthesiology. 2001;95:1096–102.

    Article  CAS  PubMed  Google Scholar 

  39. Fujiwara M, Abe K, Mashimo T. The effect of positive end-expiratory pressure and continuous positive airway pressure on the oxygenation and shunt fraction during one-lung ventilation with propofol anesthesia. J Clin Anesth. 2001;13:473–7.

    Article  CAS  PubMed  Google Scholar 

  40. Tsuchida S, Engleberts D, Peltekova V, et al. Atelectasis causes alveolar injury in nonatelectatic lung regions. AJRCCM. 2006;174:279–89.

    Google Scholar 

  41. Leo F, Solli P, Spaggiari L, et al. Respiratory function changes after chemotherapy: an additional risk for post-operative respiratory complications? Ann Thorac Surg. 2004;77:260–5.

    Article  PubMed  Google Scholar 

  42. Van der Werff YD, van der Houwen HK, Heilmans PJM, et al. Postpneumonectomy pulmonary edema. A retrospective analysis of incidence and possible risk factors. Chest. 1997;111:1278–84.

    Article  PubMed  Google Scholar 

  43. Fernandez-Perez E, Keegan M, Brown DR. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105:14–8.

    Article  PubMed  Google Scholar 

  44. Kuzkov V, Subarov E, Kirov M. Extravascular lung water after pneumonectomy and one-lung ventilation in sheep. Crit Care Med. 2007;35:1550–9.

    Article  PubMed  Google Scholar 

  45. Alvarez JM, Panda RK, Newman MAJ, et al. Postpneumonectomy pulmonary edema. J Cardiothorac Vasc Anesth. 2003;17:388–95.

    Article  PubMed  Google Scholar 

  46. Zupancich E. Mechanical ventilation affects inflammatory mediators in patients undergoing cardiopulmonary bypass for cardiac surgery: a randomized controlled trial. J Thorac Cardiovasc Surg. 2005;130:378–83.

    Article  PubMed  Google Scholar 

  47. Ashes C, Slinger P. Volume management and resuscitation in thoracic surgery. Curr Anesthesiol Rep. 2014;4:386–96.

    Article  Google Scholar 

  48. Collins SR, Blank RS, Deatherage LS, et al. The endothelial glycocalyx: emerging concepts in pulmonary edema and acute lung injury. Anesth Analg. 2013;117:664–74.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Englebert J, Macias A, Amador-Munoz D, et al. Isoflurane ameliorates acute lung injury by preserving epithelial tight junction integrity. Anesthesiology. 2015;123:377–88.

    Article  Google Scholar 

  50. Bux J, Sachs UJH. The pathogenesis of transfusion related lung injury (TRALI). Br J Haem. 2007;136:788–99.

    Article  CAS  Google Scholar 

  51. Popovsky MA, Moore SB. Diagnostic and pathogenic considerations in transfusion-related acute lung injury. Transfusion. 1985;25:573–7.

    Article  CAS  PubMed  Google Scholar 

  52. Muller MC, van Stein D, Binnekade JM, et al. Low-risk transfusion-related acute lung injury donor strategies and the impact on the onset of transfusion-related lung injury: a meta-analysis. Transfusion. 2015;55:164–075.

    Article  PubMed  Google Scholar 

  53. Dreyfuss D, Ricard J, Gaudry S. Did studies on HFOV fail to improve ARDS survival because they did not decrease VILI? On the potential validity of a physiological concept enounced several decades ago? Intensive Care Med. 2015;41:2210–2.

    Article  Google Scholar 

  54. Guldner A, Braune A, Ball L, et al. Comparative effects of volutrauma and atelectrauma on lung inflammation in experimental acute respiratory distress syndrome. Crit Care Med. 2016;44:e854–65.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chu E, Whitehead T, Slutsky A. Effects of cyclic opening and closing at low- and high-volume ventilation on bronchoalveolar lavage cytokines. Crit Care Med. 2004;32:168–74.

    Article  CAS  PubMed  Google Scholar 

  56. Schilling T, Kozian A, Kretzschmar M, et al. Effects of desflurane or propofol on pulmonary and systemic immune response s to one-lung ventilation. Br J Anaesth. 2007;99:368–75.

    Article  CAS  PubMed  Google Scholar 

  57. Balyasnikova I, Vistinine D, Gunnerson H, et al. Propofol attenuates lung endothelial injury induced by ischemia-reperfusion and oxidative stress. Anesth Analg. 2005;100:929–36.

    Article  CAS  PubMed  Google Scholar 

  58. Bernard GR. Acute respiratory distress syndrome. Am J Respir Crit Care Med. 2005;171:1125–8.

    Article  Google Scholar 

  59. Matthay M. ß-Adrenergic agonist therapy as a potential treatment for acute lung injury. Am J Respir Crit Care Med. 2006;173:254–5.

    Article  PubMed  Google Scholar 

  60. Perkins GD, McAuley DF, Thickett DR, et al. The ß-agonist lung injury trial. Am J Respir Crit Care Med. 2006;173:281–7.

    Article  CAS  PubMed  Google Scholar 

  61. Sartori C, Allemann Y, Duplain H, et al. Salmeterol for the prevention of high altitude pulmonary edema. New Engl J Med. 2002;346:1631–6.

    Article  CAS  PubMed  Google Scholar 

  62. Schilling T, Kozian A, Kretzschmar M, et al. Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation. Br J Anaesth. 2007;99:368–75.

    Article  CAS  PubMed  Google Scholar 

  63. De Conno E, Steurer MP, Wittlinger M, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110:1316–26.

    Article  PubMed  Google Scholar 

  64. Oshumi A, Marseu K, Slinger P, et al. Sevoflurane attenuates ischemia-reperfusion injury in a rat lung transplantation model. Ann Thorac Surg. 2017;103:1578–158.

    Article  Google Scholar 

  65. Blank R, Colquhoun D, Durieux M, et al. Management of one lung ventilation, impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124:1286–95.

    Article  PubMed  Google Scholar 

  66. Beck-Schimmer B, Bonvini JM, Braun J, et al. Which anesthesia regimen is best to reduce morbidity and mortality in lung surgery? A multicenter randomized controlled trial. Anesthesiology. 2016;125:313–21.

    Article  CAS  PubMed  Google Scholar 

  67. Verhage R, Boone J, Rijkers G, et al. Reduced local immune response with continuous positive airway pressure during one-lung ventilation for oesophagectomy. Br J Anaesth. 2014;112:920–8.

    Article  CAS  PubMed  Google Scholar 

  68. Gonzalez-Rivas D, Bonome C, Fieira E, et al. Non-intubated video-assisted thoracoscopic lung resections: the future of thoracic surgery? Eur J Cardiothorac Surg. 2016;49:721–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Slinger .

Editor information

Editors and Affiliations

Clinical Case Discussion

Clinical Case Discussion

A 68-year-old 70 kg male presents with bronchogenic carcinoma of the right middle and lower lobes. The patient is a smoker (30 pack-year) with good exercise tolerance. Preoperative FEV1 is 80% predicted and DLCO is 70% predicted. V/Q scan shows 50% ventilation and perfusion to the right lung. The patient has an uncomplicated 3 h right pneumonectomy. During the procedure, he receives 1.5 L of crystalloid and is ventilated with a tidal volume of 700 mL, FiO2 1.0, during both two- and one-LV. Postoperatively, the patient is stable in the recovery room (see Fig. 10.15) with thoracic epidural analgesia and is discharged to the thoracic surgical floor.

Fig. 10.15
figure 15

Immediate postoperative chest X-ray of a 68-year-old male following a right pneumonectomy. This is normal post-pneumonectomy film

On postoperative day 3, the patient complains of increasing dyspnea. The patient’s oximetry saturation is 85% on air and 93% with FiO2 0.4 mask. His pulse is sinus rhythm at 104 and blood pressure 130/80. A repeat chest X-ray is taken (see Fig. 10.16).

  • What is the differential diagnosis?

  • How can the diagnosis be confirmed?

Fig. 10.16
figure 16

Chest X-ray on postoperative day 3 of the same patient in Fig. 10.15. The patient has gradually become more dyspneic and has significant arterial oxygen desaturation breathing air. Chest X-ray shows signs of increased lung interstitial markings suggestive of pulmonary edema

The differential diagnosis should include post-thoracotomy ARDS, pulmonary embolus, congestive heart failure and/or myocardial ischemia, aspiration, and pneumonia. ARDS in this setting is a diagnosis of exclusion. A perfusion lung scan should be obtained to rule out emboli and an electrocardiogram to rule out subclinical ischemia, which is unlikely in the absence of a prior history of coronary heart disease or diabetes. A transthoracic echocardiogram should be performed to rule out myocardial dysfunction. Major aspiration is unlikely without a history of a decreased level of consciousness. Pneumonia is a possibility, but unlikely without signs of sepsis or an elevated white blood cell count, sputum for culture and sensitivity should be obtained. If other common possibilities of postoperative respiratory failure are ruled out, the provisional diagnosis is ARDS.

  • What therapy is indicated?

The patient should be transferred to an intensive care unit. All therapy is basically palliative with the aim to support respiratory function and minimize any exacerbation of the lung injury pending spontaneous resolution. Initially respiratory support should begin with noninvasive ventilation and minimizing the FiO2 to maintain normal physiologic oxygen saturations. Attempts to reduce the pulmonary vascular pressures with inhaled nitric oxide or prostacyclin are logical although not proven and are unlikely to cause harm. The same applies to inhaled β-adrenergic agents. The benefit of corticosteroids is uncertain. If gas exchange deteriorates, then mechanical ventilation using the principles of lung protection will need to be added. In severe ARDS, unresponsive to conventional therapy, the use of extracorporeal lung support should be considered (see also Chap. 55).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Slinger, P. (2019). Perioperative Lung Injury. In: Slinger, P. (eds) Principles and Practice of Anesthesia for Thoracic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-00859-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00859-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00858-1

  • Online ISBN: 978-3-030-00859-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics